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Abstract
Web tracking is expanding to cookie-less techniques, like
browser fingerprinting [41, 72], to evade popular privacy-
enhancing web extensions, namely ad blockers. To mitigate
tracking, privacy-aware users are motivated to optimize their
privacy setups by adopting proposed anti-fingerprinting con-
figurations and customizing ad blocker settings to maximize
the number of blocked trackers.

However, users’ choices can counter-intuitively undermine
their privacy. In this work, we quantify the risk incurred by
modifying ad-blocker filter-list selections. We evaluate the fin-
gerprintability of ad-blocker customization and its implications
on privacy. We present three scriptless attacks that evade SoTA
fingerprinting detectors and mitigations. Our attacks identify
84% of filter lists, capture stable fingerprints with 0.72 normal-
ized entropy, and reduce the relative anonymity set of users to
a median of 48 users (0.2% of the population) using only 45
rules out of 577K. Finally, we provide recommendations and
precautionary measures to all parties involved.

1 Introduction

To achieve web-browsing privacy, users can combine defenses
from a wide set of privacy-enhancing technologies (Web-
PETs). Web-PETs can ship as browser extensions [8, 12, 31,
67] or privacy-focused browsers [19]. Ad blockers, the most
popular form of these Web-PETs, focus on filtering and block-
ing activity from advertisement and tracking services (ATS)
using filter lists curated by experts.

Traditionally, ATS use web cookies to link multiple user
visits together, which current Web-PETs are blocking effec-
tively [48]. When cookies are not available, ATS leverage
browsing fingerprints, i.e. unique features associated with the
user’s browser setup, to re-identify users [41, 72]. One well-
studied fingerprinting vector is extension fingerprinting [72],
in which the features used represent whether the user browser
has certain extensions installed or not. ATS extract this infor-
mation by exploiting browser APIs and extension interactions

with web pages. Prior work shows that extension enumeration
attacks can identify a significant portion of the global user
population (Section 2).

To defend against browser fingerprinting [2, 23, 33, 62],
the community proposes many web PETs [24, 39, 51], and ad
blockers make available filter lists tailored to defending against
malicious scripts like fingerprinting. Privacy-aware users en-
able many of these PETs (e.g., use the Tor browser and/or
disable JavaScript) and fine-tune their ad blocker filter lists to
block more (fingerprinting-oriented) trackers. These additional
defenses would block fingerprinting scripts and protect these
users from most existing browser fingerprinting (like extension
enumeration), allowing them to hide in large anonymity sets.
Previous work showed that users overestimate the privacy pro-
tection they obtain from the layering of defenses [66]. In this
work, we study whether customizing filter-list choices, on top
of employing existing protections, gives a false sense of safety
to privacy-aware users.

Unlike the extension enumeration literature (Section 2),
which examines attacks maximizing the coverage of detected
extensions in a global user population, we examine attacks
maximizing the coverage of detected filter lists in a privacy-
aware user subpopulation. While prior work focuses on ex-
tracting one bit from many extensions (whether the extension
exists or not), our attacks extract multiple bits (whether filter
lists exist or not) from only one extension. This means that even
if privacy-aware users install a limited homogeneous set of ex-
tensions, their distinctive configurations of ad-blockers might
uniquely identify them through our attacks. We believe that the
discriminate risk of ad-blocker configuration fingerprinting
on privacy-aware users is noteworthy, given that ad-blockers
single-handedly cover 164 Million installs (23% of installs
among the top 20 Chrome extensions [9]) and serve 31.5% of
web users [25]. In addition, the subpopulation of ad blocker
users who configure their ad blockers, which we consider to be
privacy aware, is significant; it is at least 18% for AdGuard –
a prominent ad-blocker (Section 6) compared to only 4% of
global users who disable their JavaScript [46] and target to the
established field of stylistic extension fingerprinting [44].



Concerns about filter-list fingerprinting have been a topic
in multiple non-academic discussions [1, 20], and some im-
plemented ad-hoc attack proof-of-concepts [21]; but this risk,
nevertheless, remains unquantified.

Our work quantifies the privacy risk stemming from cus-
tomizing filter-list configurations in two popular ad blockers.
Specifically, we evaluate the trade-off between blocking more
ATS– by enabling more filter lists in ad-blocker settings – and
the risk of fingerprinting. Lin et al. [44] first investigated this
tradeoff and argued that privacy extensions’ benefits outweigh
their fingerprinting risks; our results directly contest their un-
challenged conclusions by uncovering novel multi-bit finger-
printing attacks (Section 6). To our knowledge, we are the first
to present practical attacks to recover ad-blocker configura-
tions, allowing us to quantify how much specialized configura-
tions undermine users’ privacy.

Our primary contributions are as follows:

• We establish a baseline attack – that assumes maximum
coverage of filter lists – and discover three scriptless at-
tacks to fingerprint ad-blocker configurations.

• We introduce the concept of equivalence sets to minimize
the number of rules needed to maximize fingerprintability.

• Unlike many extension enumeration studies that stop at
extension coverage [28], we evaluate the effectiveness
of fingerprinting on two real-world privacy-aware user
datasets from prominent ad blockers, AdGuard [12] and
uBlock Origin [67]. Our attacks can identify 69/87 and
63/68 respectively of these ad-blocker filter lists. With
these lists, 50% of privacy-aware AdGuard users have an
anonymity set smaller than 48 users (0.2%).

• We discuss and evaluate possible detection and mitigation
techniques and conclude with precautionary recommen-
dations to users, ad blockers, and browsers.

2 Related Work

In this work, we study whether fingerprinting ad-blocker set-
tings, specifically filter lists, can reduce the privacy of ad-
blocker users. Our work goes beyond web-extension finger-
printing studies, as they only determine whether ad blockers
and extensions exist. Also, our motivation to fingerprint ad-
blocker functionality comes from the anti-adblock movement:
websites that detect and restrict ad-blocker users from access-
ing their pages. Finally, our attacks rely less on JavaScript,
which aligns with stylistic (or scriptless) fingerprinting studies.

Web-Extension Fingerprinting. Extension fingerprinting
is a well-studied field studying how attacker-controlled sites
can uncover the user’s installed browser extensions [72]. Many
studies do not perform any user studies, reporting only on the
number of fingerprintable extensions [28, 56, 60, 63]. Studies

that perform a user study report different degrees of fingerprint
uniqueness and quality – between 14.10% of 854 users [62]
and 39.29% of 7,643 users [33] – because of user datasets
sizes, distribution, and collection methods (e.g., in-lab test-
ing, crowdsourcing, and public forum data). Earlier studies
detect extensions based on web resources they expose to the
page (e.g., icons, images, etc.) called web accessible resources
(WAR) [33, 55]. Only 28% of Chrome extensions and 6.73%
of extensions are detectable with WARs [33], so newer studies
check if an extension exists by their modification of the web-
page DOM(e.g., inserting buttons, removing ad containers, etc.)
or load-time impact [15, 40, 52, 62, 63] or by exploiting inter-
extension message passing [15, 28]. Other studies extend this
by modifying or interacting with the page to trigger extension-
specific actions [60]. Our attacks also look at the modifications
made by the ad-blocker by removing ATS-related elements or
blocking requests. However, unlike this line of work, we aim
to extract more than one bit from the extension and not sim-
ply know whether it exists. Additionally, since most of these
attacks require a fingerprinting script, they can be thwarted by
disabling javascript or script-blocking employed by privacy-
aware users. We show that in such conditions, our attacks still
deanonymize these users despite their prior sense of protection.

In concurrent work, Solomos et al. [61] proposed Hecate,
a multi-bit fingerprinting against extension configurations.
Specifically, the authors fuzz configuration options, primarily
related to extension storage, to elicit fingerprintable behavior
and create a database of the fingerprints of different extension
configurations. To identify a configuration in a given browser,
they compare the measured fingerprint to the configuration
database. Using an MTurk pilot study they find that 25% of
the 375 participants could be uniquely identified.

Our work differs from Hecate in three main areas: (1) we
specifically focus on privacy-aware users, (2) we strictly rely
on scriptless attacks, and (3) we do not need a database of
fingerprints to recover a particular configuration; our attacks
directly extract the configuration from the measurements.

Scriptless Fingerprinting Since ad-blockers or other pro-
posed defenses [39] can block the fingerprinting scripts, newer
studies suggest fingerprinting attacks that deliver the finger-
print to the attacker using other page features (mainly CSS)
without using JavaScript [44] The literature distinguishes be-
tween JS-based fingerprinting and CSS (or stylistic) finger-
printing. We modify this distinction by grouping attacks that
do not use dedicated scripts into “scriptless attacks” (even if
some need JavaScript enabled) and others as “scripted” attacks.
This distinction comes from the vast difference in detecting
and mitigating scripted attacks versus scriptless attacks by
SoTA defenses [39]. In general terms, these attacks exploit
differences in devices (e.g., display size, available fonts, etc.)
and implement CSS styles that execute for one device but not
the other. For example, the rule @media (min-width:300px)
#probe {background: url(a.com/img.png)} sends a re-



Table 1: Most Popular ATS-blocking tools. Total users are computed from the Chrome web store that serves popular Chromium
browsers like Chrome, Edge etc., and the Firefox add-ons store.

Ad Blocker Integration Decision Method Blocking Issue Reporting Total Users N. Filter Lists

Adblock Plus Extension Filter Lists Proprietary Forum [30]+ Over 47 Million 31
uBlock Origin Extension Filter Lists GitHub Forum [68] 44 Million 68
Brave Shields Browser-Native Filter Lists + Heuristics Proprietary Forum [18] 25.3 Million 51
AdGuard Extension Filter Lists GitHub Forum [13] 15 Million 87
Ghostery Extension Filter Lists + Tracker List GitHub Forum [6] 3 Million 12*

Privacy Badger Extension Heuristics GitHub Forum 2 Million -
* Ghostery allows to customize each list further at the ATS domain level.
+ User reporting mechanism is private, i.e., ad-blocker metadata is not shared with the public.

quest to a.com only if the window size is at least 300px [44].
As you can see, the fingerprinting signal is delivered directly
through CSS and not collected by a script as with prior tech-
niques. Our scriptless attacks expand on this concept to probe
and send signals about active ad-blocker settings.

Anti-Adblock. Today, sites that depend on ATS to operate
borrow techniques from extension fingerprinting to detect and
block access from visitors with ad-blockers [37]. 30.5% of
the Alexa top-10K websites use anti-adblock scripts [73] that
check whether certain DOM elements display correctly or get
blocked. These elements can be real Ads or “baits” added by
the script [73]. We got inspired to use multiple baits that trigger
only for specific configurations of the ad-blocker to fingerprint
the ad-blocker user’s settings. We found only one mention of
the ad-blocker configuration fingerprinting in a blog post by
FingerprintJS employee [1], which showcases inserting DOM
elements that get hidden only for specific ad-blocker rules and
verifying if they get hidden through a script similar to anti-
adblock. This work presents an in-depth analysis of ad-blocker
filter-list attacks that do not require dedicated scripts and cover
more ad blockers and configurations.

3 Background

First, we present preliminary information relevant to our pro-
posed ad-blocker fingerprinting attacks. We introduce ad block-
ers, their inner workings, and how users customize them.

3.1 Ad Blockers
Ad blockers aim to protect web users from ATS by block-
ing ATS-related network requests [10, 14] and altering web
pages to hide ad-related content (referred to as cosmetic [14]
or content [10] changes). Ad blockers are popular among
web users (Table 1) for their dual benefits: protecting user
privacy by limiting ATS activity and improving user experi-
ence by decluttering the page. Most ad blocking is provided
by browser extensions, e.g., Adblock Plus [31], uBlock Ori-
gin [67], Ghostery [5], AdGuard [12], Privacy Badger [8],
while some come directly bundled in browsers, e.g., Edge [47],

Firefox [45], and Brave browser [19]. Widely-adopted ad-
blockers detect ATS activity predominantly through block-
listing, while a few rely on heuristics (e.g., Privacy Badger [8])
– see Table 1. Block-listing works by checking each request
and element against a preset list of known ATS-related requests
and patterns. Expert maintainers curate these lists in public
repositories and update them regularly [13, 30, 68]. In this
work, we focus on block-listing ad blockers as they are the
most popular and have parsable configurations.

3.2 Filtering Rules

If block lists simply enumerate all possible ATS resources, the
list would be too large to be practical. Instead, maintainers ex-
tract common patterns from ATS and write them into filtering
rules, e.g., blocking all requests that contain */advert. The ad
blocker compares every request or web page element against
all active filtering rules. AdBlock Plus [31] first introduced the
syntax governing these rules, which has since been adopted
and extended by newer ad blockers [14]. In addition to the
pattern, rules include modifiers prefixed by a $ sign. Modi-
fiers add granularity in defining precisely what to block and
when, e.g., the $img modifier blocks only image requests. As
a demonstration, rule 1 in Listing 1 blocks all image requests
that start with the domain.com/contact URL prefix.

1 | | domain . com / c o n t a c t ^$img
2 # # . ad
3 # # . ad$remove ( )

Listing 1: AdGuard Filtering Rules Examples

Rules can be categorized in many ways based on their syntax,
e.g., whether it is an exception or not. To our purposes, we
focus on two filter-rule attributes: its scope and type.

Rule Scope. Rules can either be generic, i.e., active regard-
less of the website the user is visiting, or specific, i.e., active
only on specific websites. For example, for requests containing
/market/ as ATS on domain.com but not on wikipedia.com,
maintainers can restrict the rule to domain.com to avoid false



positives. Specific rules can be restricted to a list of domains 1

by appending the $domain modifier.

Rule Type. Rules that block network requests are called block-
ing rules; and rules that alter the web-page HTML or CSS (e.g.,
hiding ad containers) or inject JavaScript are called cosmetic
rules [14] – prefixed by the ## symbols (rules 2 and 3 in List-
ing 1). For instance, rule 2 hides all DOM elements tagged
with the class ad by altering CSS styles on any page. Rule 4
goes beyond rule 1 and removes the element from the DOM
completely i.e., from the rendered web page.

3.3 Filter Lists

As the ad-blocking community grew, so did the number and di-
versity of filtering rules. Today, ad blockers contain hundreds of
thousands of rules for specific purposes like language-specific
rules (e.g., rules for German websites), cookies-blocking rules,
social-media-specific rules, etc. [12]. Maintainers group fil-
tering rules of the same purpose into filter lists hosted on
GitHub or by 3rd-parties on standalone websites [7]. Maintain-
ers fine-tune rule granularity (scope, type, modifiers, etc.)and
organize them into dedicated lists with five goals in mind:
(1) easing maintenance, (2) allowing users to activate lists
based on their preferences [11], (3) maximizing the coverage of
blocked ATS, (4) optimizing list sizes to reduce web-page load-
ing time, (5) preventing web-page breakage due to false posi-
tives [26, 58]. For example, the AdGuard Social Media filter
list specializes in removing social media buttons such as “Like”
and “Share” buttons available in both AdGuard and uBlock
Origin [11]. Maintainers frequently update their lists follow-
ing user reports of new ATS resources, existing ATS evasively
changing their patterns [22], or web pages breaking [26, 58]
into dedicated forums or proprietary reporting mechanisms
(Table 1). Note that two distinct filter lists can still contain
duplicate rules due to independent maintainers (e.g., AdGuard
Base [11] and EasyList [4]) or similarity in purpose between
the lists (e.g., Austrian and German filter lists).

3.4 User Customization of the Ad Blocker

In addition to proprietary filter lists, ad blockers provide users
with a set of third-party filter lists to activate or deactivate, e.g.,
the famous EasyList [4] developed by Adblock Plus [31] and
adopted by most major ad blocking extensions. Updating the
filter-list subscriptions is straightforward: users can navigate
to the ad blocker’s settings from the extension view and click
on the list toggles to activate/deactivate them. We identify two
reasons users would personalize their filter-list subscriptions:
(1) subjective browsing patterns and expectations (e.g., some
users might want to block adult content, some might dislike

1 Domains are primarily expressed as “regular domains”, e.g., domain.com
or “any TLD domain”, e.g., domain.*, with the star as a wildcard to match
any suffix like domain.co.uk [14].

social media buttons, and others might find “debatably” an-
noying web-page elements with “AdGuard Annoyances”), and
(2) different languages (e.g., “AdGuard Arabic”). When the
users activate multiple lists, the ad-blocker extension will take
the union of the activated lists, i.e., it will check the behavior
against all rules in the concatenation of the activated lists.

4 Fingerprinting Attacks

Since ad-blockers can be extensively personalized (Section 3),
adversaries can use the user’s filter-list subscriptions as a fin-
gerprint for cross-site tracking. In this section, we describe the
threat model, propose client-side attacks to identify active filter
rules, and present the methods to optimize fingerprinting.

4.1 Threat Model
The considered adversary is interested in (fully or partially)
uncovering the user’s active filter lists and mapping them to a
constant user fingerprint across websites – without relying on
stateful information like cookies. Following prior fingerprint-
ing attacks [2, 23, 33, 44], we assume the adversary cannot
control the browser and cannot directly query the filter lists
from the browser storage. Instead, the adversary can ask inter-
ested websites to embed JavaScript, CSS, or HTML compo-
nents to conduct tests for active filter rules only by observing
the impact of these rules on the page: e.g., specific requests
that get blocked or page elements that disappear. We refer to
this act as filter-rule detection attacks. To arrive at optimized
user-level fingerprints, the adversary must also decide which
filter rules to test for and design a mapping from in-page test
results to user fingerprints. Tracking Services that integrate
directly into the first-party domain already exist [39], e.g., Fin-
gerprint.com [29] and Simple Analytics [54]. Also, adversaries
embedding HTML elements in the page source is a reasonable
assumption for the scriptless literature [35, 44] similar to our
work (Section 2). However, we also present a baseline attack
that does not require first-party modifications, which is more
detectable by SoTA fingerprinting detectors.

4.2 Filter-Rule Detection Attacks
As shown in Figure 1 (1), the attacker adds page components
that behave differently if a target rule is active. For example,
a simple test for a rule hiding elements with the class advert
inserts an element with this class and checks if it’s visible or
not using JavaScript. Each attack is composed of a collection
step (the reaction of embedded components to the rule) and a
sending step for the results to reach the adversary’s domain.

In this work, we present three attacks that offer varied guar-
antees/assumptions compromises, as they exploit distinct col-
lection and sending mechanisms. While we only present the
most powerful attack in-depth, we emphasize with the other at-
tacks the inherent ability of CSS features to leak the behavior of
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Figure 1: Overview of the fingerprinting attack framework. The
adversary implements two steps: (1) triggering web activity
that specific filter lists in the fingerprinting template can block,
and (2) sending the signals back.

ad blockers. You can refer to Table 3 for a summary of testable
rules for each attack. We also provide a proof-of-concept demo
of the attacks at flfp-demo.github.io.
Baseline attack. This is the most aggressive attack, in which
we assume the attacker has control over select third-party do-
mains loaded as iframes in the target website and a dedicated
fingerprinting script. This attack represents a (noisy) baseline
for the maximum number of detectable ad-blocker filter rules
without access to the user’s browser. Generic rules are straight-
forward to detect. For generic blocking rules, the attacker script
can use the fetch API to check whether the request is blocked
or not 2, and for generic cosmetic rules, the attacker can mon-
itor whether HTML elements that match blocking rules are
visible or not (blocked) [1]. However, domain-specific rules
trigger for specific domains, potentially different from the at-
tack website. So, the attacker needs to load the domain within
an iframe in the parent page and send the requests from that
context. Still, the browsers’ same-origin policy prevents scripts
in the parent domain from accessing elements in a 3rd-party
iframe’s domain and only allows for communication through
the window.postMessage API [3]. The attacker can use this
API to send the attack results from a script in the iframe of
the colluding domain to the script of the parent domain. As
we later show in Section 7.3, the window.postMessage API
is already used by some websites, and the adversary could
set up such a system with a few ATS domains to expand their
tracking network. In Section 6.4, we show that generic rules
sufficiently cover most lists and that the adversary needs less
than 12 domains to cover all the filter lists.
CSS animation attack. CSS animations help integrate dy-
namism in the behavior of web elements by controlling the
value of CSS properties over time, like loading bars, chang-
ing element background colors, etc. [3]. One property that
CSS can animate is the background-image. Moreover, mod-
ern browsers implement many optimizations to reduce the
performance costs of loading web pages: we experimentally

2Adding {mode: "no-cors"} allows us to distinguish between blocking
due to CORS (returns a failed response) and ad blockers (throws a TypeError)

find that the browser will not fetch the background image re-
quest if the element is hidden (with the display:none CSS
style). Both ad blockers hide blocked images and elements with
display:none, so the attacker can rely on this background
image request to determine whether the element is blocked.
However, uBlock Origin applies this style with a slight delay,
during which the background image request goes through. To
resolve it, we trigger the background image style after a 1s
delay using CSS animations to wait for the display:none to
be applied. Overall, the attack can detect generic blocking
and cosmetic rules. The advantages are that CSS animations
work even with JS disabled and that requests get triggered only
for unblocked rules, reducing the attack footprint.

Summary of other attacks. In addition to the CSS animation
attacks, we also discovered two other ways to infer the presence
of a filter rule. Given their identical coverage of rules and slight
limitations, we only briefly sketch them here and refer the
interested reader to the appendix for a more verbose discussion.

These attacks do not depend on animations, which show-
cases the abundance of methods to detect active filter rules
without scripts. The first attack relies on “lazy loading” images,
where browsers would not request an image until it is close
enough to the user’s viewport to reduce the web page’s loading
overhead. An attacker could add an element to be blocked by a
specific rule on top of an image element that sends a request
to the attacker’s server. If the element is blocked, the attacker
receives the image request earlier than others in the same row.
However, this attack can be subject to timing imprecision, de-
pending on the user’s scroll speed. The second attack exploits
a new feature proposed by the W3C [70]: @container queries.
Styles in this @container context would only execute if a
target “container” element is rendered with “computed” styles
or values e.g., height, opacity, etc.. “Computed” styles and
attributes for a DOM element are values determined by the
browser after parsing all CSS stylesheets targeting this ele-
ment, JavaScript, and web-page environmental changes (e.g.,
screen width), such as the ad-blocker styles that hide the el-
ement. The attacker can use these queries to infer whether
an ad-blocker rule acted on this element or not. All browsers
fully support querying attributes like container width. How-
ever, more advanced “style” queries, like opacity, are still a
work in progress. However, @container queries only have 6%
adoption (Table A2), making it easier to patch by browsers.

4.3 Optimizing Filter-Rules to Test
By running multiple tests on different rules, the attacker can
uncover the fingerprinting vector pertaining to the user’s active
filter rules (e.g., [rule 1: Yes, rule 2: No, · · · ]). Given that the
user enables and disables filter lists (??) not specific rules, the
presence or absence of tested rules can reveal whether com-
plete filter lists are active or not, e.g., if amazon.de is blocked,
and only German filter list contains a rule that blocks it, then
knowing that amazon.de is blocked leaks the presence of the

https://flfp-demo.github.io


complete list. So, rather than maximizing the detectable rules’
count, the adversary has to test for the fewest rules that max-
imize the number of detectable filter lists for users, referred
to as filter-list coverage. Maximizing filter-list coverage ex-
tracts most info about users and improves fingerprint quality,
while minimizing rules reduces the number of tests, limits de-
tectability, and increases the attack efficiency. Constraining the
number of tests aligns with the goals of prior work [33, 44].

We study two ways to map rules to fingerprints and evaluate
their filter-list coverage in Section 6.1.
(A) Unique Rules per Filter List. A straightforward method
is to choose one unique rule for each filter list and test for them.
(B) Rule-Filter-List Equivalence Sets. While (A) restricts
us to an 𝑚-to-one mapping between one list and all 𝑚 rules
unique to it, consider here a more general case. Any filtering
rule 𝑟 belongs to a set of one or more lists 𝑙, refer to it as the
prefix set of 𝑟 𝐹𝑟 = {𝑙1, 𝑙2, · · · }. The rule 𝑟 is active if and only
if one or more lists in 𝐹𝑟 are active. We draw the equivalence
𝑟 ↔ 𝐹𝑟 . We can find multiple rules 𝑟𝑖 that belong to the same
set of lists, and establish an identical equivalence, i.e., all 𝑟𝑖
are active if and only if one or more lists 𝑙𝑖 are active. We
refer to the sets of rules and sets of lists as the equivalence set.
Note that rules unique to filter-lists used in (A) are a subset
of equivalence sets of the form {𝑟1, 𝑟2, · · · } ↔ {𝑙𝑖}; we refer
to all other equivalence sets (that map to two or more lists) as
“complex" equivalence sets.

4.4 Fingerprinting Metrics
We rely on multiple standard metrics from the literature [24,
32, 33] to evaluate the success of the proposed fingerprinting
attacks on user populations. Previous work measures the fin-
gerprinting vectors’ quality and utility with two metrics: the
normalized Shannon entropy of the fingerprints [33, 44], and
the proportion of 𝑘-small anonymity sets.
Normalized Shannon entropy. The normalized Shannon en-
tropy measures the ratio between the number of bits an average
fingerprint introduces about a user compared to the number of
bits needed for the fingerprint to be unique [65]. It is an appro-
priate metric to compare fingerprinting datasets with different
supports as in Table 2. We define it in Equation 1.

𝐻 (𝐷) = − 1
log2𝑁

∑︁
𝑎𝑖∈𝐴

𝑃𝐷 (𝑎𝑖) log2 𝑃𝐷 (𝑎𝑖) (1)

𝐷 is the set of user fingerprints, 𝑁 = |𝐷 |, 𝑃𝐷 (·) is the fre-
quency of a given fingerprint, and 𝐴 is the set of all possible
fingerprints (all possible values of the fingerprint template).
Proportion of 𝑘-small anonymity sets. We call the set of users
with the same fingerprint as the anonymity set. Users in the
same anonymity sets are indistinguishable, so the attacker’s
goal is to minimize the sizes of these anonymity sets. The
𝑘-small anonymity sets are all anonymity sets of size less or
equal to 𝐾. Let 𝑈𝑘 (𝐷) be the fraction of these sets out of all

anonymity sets in 𝐷. For example, 𝑈1 (𝐷) is the proportion
of unique users. In our study, these attacks are meant to be
used along with other established fingerprinting techniques,
so reducing the anonymity-set size to 𝑘 ≤ 100, for example,
can still uniquely identify users when considering additional
signals. While traditional fingerprinting attacks group all users
implementing appropriate fingerprinting defenses into large
anonymity sets, the attacks we propose will further segment
them into smaller anonymity sets since the same users will
heavily customize their ad blockers.

4.5 Mapping to User Fingerprints
To optimize for the metrics in Section 4.4, not all filter lists
are equally valuable for fingerprinting users, e.g., the AdGuard
base list should be active by default for all users. So, the at-
tacker should choose which lists to test for that yield the best
fingerprinting utility. We refer to this subset of lists as the
fingerprinting template. In our work, we consider the two pop-
ular fingerprinting goals in browser fingerprinting literature:
targeted fingerprinting and general fingerprinting [32, 33, 34].

Targeted Fingerprinting. Here, the attacker is interested in
distinguishing whether the website visitor is a targeted user or
not, i.e., they aim to maximize the likelihood of distinguishing
a specific individual from the remaining population [33]. So,
the adversary searches for the smallest possible fingerprinting
template, such that the target’s fingerprint is unique or has a
small anonymity set. Note that the fingerprint template for each
target user can be different.

General Fingerprinting. Here, the attacker aims to find a
global fingerprint template that uniquely identifies the largest
number of users. Gulyas et al. [33] propose a near-optimal
algorithm by choosing the least number of features that divide
the population into anonymity sets of the smallest sizes.

Gulyas et al. [32] shows that the optimization problems for
both settings is an NP-hard problem, and they suggest near-
optimal greedy algorithms – with an approximation ratio of
(1−1/𝑒) ≈ 0.6 (i.e., the algorithm will cover at least 60% of the
optimal elements of the template). We adapt their algorithms
for our settings. For more details, we refer the reader to their
paper [32] and our code-base (Section 9).

5 Ad Blockers and User Datasets

In this section, we present the data collection methods and the
data sources used for user ad-blocker configurations.

5.1 Collecting Ad-Blocker Configurations
To study the uniqueness of filter list combinations activated by
users, we require a dataset of real-world ad-blocker users’ con-
figurations. However, crowdsourcing efforts comes with many
challenges, namely: (1) Automatically processing and storing



the web-extension profiles3 privately and ethically reduces par-
ticipation rates [33]; (2) crowdsourcing such configurations
would not yield the audience of interest for our analysis (the
subpopulation of privacy-aware users), as privacy-aware users
are unlikely to participate in crowdsourcing due to the possibly
invasive surveyed information; (3) we cannot guarantee that
participants are everyday ad-blocker users (participants may
install the extension just to get the reward).

As finding study subjects is challenging, we opt for another
data source of publicly accessible configurations, similar to
prior work [40]. We scrape ad-blocker forums, where users
post feedback and requests to ad-blocker and filter-list main-
tainers, to gather user ad-blocker configurations at scale. We
only include “valid” posts where we can reliably extract the
filter-list subscriptions from the metadata of the user post. We
acknowledge the representativeness limitations of our datasets
in Section 5.3; however, we also argue in that section that it is
a sufficient realistic sample for our demographic.

We investigate the forums of the most popular ad-blockers
(Table 1) and collect datasets from forums that have more
than 5,000 users with “valid” posts. While we only study two
ad blockers, many of their filter lists overlap with those used
by other ad-blockers and privacy browsers like Brave [19] –
which we could not obtain public forum datasets. We give more
details about our dataset filtering approach in Appendix C.1.

5.2 Investigated Ad-blocker Forums
We investigate the most popular ad-blocking tools (Table 1)
and their respective forums to gather user ad-blocker configu-
rations at scale. We exclude Adblock Plus, Brave Shields, and
Ghostery as their forums are not publicly accessible or do not
contain structured user posts – more details in Appendix B.

uBlock Origin [68]. uBlock Origin is the second most popular
ad-blocker extension with 44 million installs (Table 1). Ex-
tension maintainers provide a public forum on GitHub where
users can report issues and request new features. Despite in-
cluding many posts, only recent posts start including structured
information about the user’s filter lists that can be automati-
cally scraped. So, we are limited to 5,890 posts (52% of total
posts). We refer to the user settings dataset as UBLOCK.

AdGuard [13]. AdGuard is the third most popular ad-blocker
extension with 15 million installs (Table 1). Similar to uBlock
Origin, they host a public issues forum on GitHub. The ad-
vantage of this forum is the consistent structure of posts since
2022, which allows us to automate the user ad-blocker con-
figuration extraction: each post features a table containing the
names of the user’s active filter lists. A limitation, however,
is that all posts are submitted by the AdGuard bot account,
preventing us from connecting multiple issues to the same user.
As an approximation, we assume that each post has a unique
user. Our approximation should not impact the dataset utility

3Web extension data containing user settings stored in the browser

or uniqueness results, as we show in Section 6.3 that 90.4% of
uBlock Origin users rarely post multiple issues with different
configurations. Hence, this dataset provides a lower bound on
the uniqueness of users’ configurations, as we over-estimate
the number of people with identical configurations. We include
the 18,494 AdGuard user settings we extracted. We refer to the
user filter-list subscription dataset as ADGUARD.

Thus, we argue that our approximation is not an issue for
our study. At most, it means that we overestimate the number
of people with identical configurations, and thus, our results
constitute a lower bound of the users’ uniqueness.

5.3 Representativeness of Forum Users

Given the challenges of collecting live samples of ad-blocker
users (Section 5.1), we use ad-blocker forum authors as a proxy
for privacy-aware ad-blocker users. While some privacy-aware
individuals might not interact with the forum (low recall), we
argue that most forum users are privacy-aware (high precision).
More so, we believe forum users represent the best practical
sample of proactive ad-blocker (and privacy-aware) users for

(1) Low bar of entry to forum. At first glance, forum authors
can seem like a biased tech-savvy sample, as laypersons are
unlikely to venture into GitHub to post issues. However, both
AdGuard and uBlock Origin offer in-app feedback reporting
interfaces – easily accessible to most users. For example, Ad-
Guard relies on a bot to deliver the posts from the app interface
to the GitHub forum. We observe that the vast majority of
the posted issues reach the GitHub forums through these in-
terfaces, and raise non-technical concerns (e.g., requests to
unblock specific pages, block specific Ads, etc.).

(2) AdGuard forum authors mention using advanced pri-
vacy features. Among the metadata shared in AdGuard forum
posts, we can find whether authors specifically enable advanced
privacy features. We find that at least 40% of posts mention
using “Advanced protection” or “Stealth” features conforming
with the behavior of advanced (privacy-aware) users.

(3) AdGuard internal statistics corroboration. We contacted
Ad-blocker teams for filter-list configuration datasets. Ad-
Guard’s team replied that they do not collect per-user con-
figurations and also pointed out that using the forum is the way
to get practical and meaningful per-user data for our purposes.
Fortunately, AdGuard’s team shared internal stastistics of filter-
list popularities which support the representativess of the fo-
rum dataset. Filter-list popularity in their internal statistics is
close to the forum’s list popularity (0.7 Rank Biased Overlap
and 0.009 EMD). The only forum lists over-represented are
those related to aggressive blocking (reinforcing that these are
privacy-aware users) (Figure A1).

Finally, the size and representativeness of fingerprinting
datasets is a common issue across all fingerprinting studies
[23, 33, 44, 62]. In the future, we hope ad blockers can utilize



Table 2: Normalized Shannon Entropy of our collected datasets
compared to previous work.

Dataset Size Entropy Unique Users

FPJS1[2] 1,848 0.532 29.1%
StylisticFP [44] 1,848 0.582 29.4%
Audio Fingerprint [23] 2,093 0.25 02.3%

Extension Fingerprinting

XHOUND [62] 856 0.44 14.1%
Gulyas et al. [33] 7,643 0.64 39.3%
CARNUS 3[40] 9,286 - 94.5%
Hecat [61] 375 - 25.6%

Our Work

ADGUARD 18,494 0.75 28.5%
UBLOCK 5,890 0.66 28.4%

1 The metrics for FPJS were most recently evaluated in the
StylisticFP study [44].

2 The paper reports entropy per feature. We select the maxi-
mum entropy.

3 The authors report multiple uniqueness values by consider-
ing different number of extensions. They focus on unique-
ness for users installing 4 extensions, reported in the table.

our methodology to evaluate the impact of our attacks on their
internal user datasets.

6 Evaluation

In this section, we evaluate the viability of the fingerprinting
attacks proposed in Section 4.2 in re-identifying filter lists and
users. We also evaluate the fingerprint stability over time and
explore the detectability of the attacks. We make the code and
data for this work available (instructions in Section 9).

6.1 Rule and List Coverage
Cosmetic rule tests do not require sending ATS requests, so
they can be more attractive to adversaries in reducing network
footprint. So, We evaluate how many filter-list and equivalence
sets (Section 4.3) each attack and subset of rules can re-identify.
Higher coverage is linked to higher-quality user fingerprints.
Results. We summarize our results in Table 3. First, we notice
that a substantial decrease in rule coverage does not lead to
a strong reduction in list coverage – across all attacks. For
instance, in AdGuard, generic cosmetic rules account for less
than 16% of all available rules, yet they can identify 58 (75%)
lists. The reason is intuitive: to identify a list, the adversary
needs no more than one unique rule for this list. Second, we ob-
serve that while the number of detectable lists is more robust to
variance, the number of available equivalence sets varies more
strongly with respect to the rule coverage. Generic cosmetic
rules only expose 143 equivalence sets, 2.8 times less than
that of Baseline attack at 406. On top, we find that “complex”
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Figure 2: The distribution of users across their anonymity set
size and the distance of their filter list configurations from the
default. Dataset=ADGUARD, Browser Attack=CSS animation
attack, and Attack Goal=Targeted Fingerprinting. For all other
combinations, we observe similar trends.

equivalence sets (containing more than one list) constitute 53%
of the fingerprinting template on average across attacks for gen-
eral fingerprinting on ADGUARD. We conclude that, while the
attacks target restricted subsets of rule types, they still can reli-
ably leak a large portion of information (lists and equivalence
sets) from the user’s ad-blocker configuration.

6.2 Reducing User Anonymity

To measure the power of the attacks in re-identifying users, we
evaluate the entropy and uniqueness of the attacks (Section 4.4)
before applying targeted and general fingerprinting – to mea-
sure the power of an unconstrained attack to identify users
– and after applying them. Regarding general fingerprinting,
we report the smallest fingerprinting template size (between
one and 90), at which entropy and uniqueness stop increasing.
Regarding targeted fingerprinting, since each user is treated
separately, we measure the portion of unique users and the
maximum (worst-case) fingerprinting template size. Finally,
we study how the anonymity set size varies with the degree of
customization of the filter lists (more about computing filter-
list distance in Appendix C.5), to answer our primary question:

“to what extent does customizing your filter-list subscriptions
increase your fingerprintability?”

Results. We summarize the results in Table 4. First, the un-
constrained entropy of the attacks is comparable to the over-
all dataset entropy in Table 2 for ADGUARD and 0.1 lower for
UBLOCK; this means that the attacks reliably extract the overall
user ad-blocker customization info. On top, the uniqueness
results are comparable to those achieved by prior attacks in
Table 2, with a maximum of 26.66% for ADGUARD and 20.22%
for UBLOCK– albeit we target an audience of privacy-aware
users and assume the general population is already susceptible
to prior attacks [2, 23, 62]. Comparing attacks, we find that
all proposed scriptless attacks, e.g., the CSS animation attack,
achieve the highest entropy (0.73 for ADGUARD and 0.56 for
UBLOCK) and approach the uniqueness of our baseline Baseline



Table 3: The number of detectable lists, equivalence sets, and testable rules for each attack.

AdGuard uBlock Origin

Lists Equiv. Sets Rules Lists Equiv. Sets Rules

All rules 77 497 1,047,019 (100%) 66 282 585,536 (100%)

Generic rules 71 418 604,868 (57.7%) 65 216 354,840 (60.6%)
Generic network rules 70 393 444,878 (42.5%) 63 197 293,390 (50.1%)
Generic cosmetic rules 58 143 159,990 (15.3%) 54 98 61,450 (10.5%)

Attacks

Baseline attack 76 494 1,044,270 (99.7%) 65 280 583,267 (99.6%)
CSS animation attack (+ others) 69 406 577,494 (55.2%) 63 212 336,332 (57.4%)

Table 4: Statistics of attacks on collected datasets. 𝑚 is the size of the fingerprinting template (number of rules to test for), and
𝑚𝑚𝑎𝑥 is the maximum fingerprinting template across different users. We group all attacks exploiting all generic rules into one
row similar to CSS animation attack under “+ others”.

Dataset Attack N, Equiv. Sets Entropy Unique Users Targeted Fingerprinting General Fingerprinting

Unique Users 𝑚𝑚𝑎𝑥 Entropy Unique Users 𝑚

ADGUARD
Baseline attack 494 0.73 4931 (26.66%) 3865 (20.90%) 27 0.63 3865 (20.90%) 87
CSS animation attack (+ others) 406 0.72 4605 (24.90%) 3570 (19.30%) 30 0.62 3570 (19.30%) 87
Generic cosmetic rules only 143 0.69 4114 (22.25%) 2855 (16.92%) 29 0.58 2,855 (16.92%) 74

UBLOCK
Baseline attack 280 0.56 1191 (20.22%) 977 (16.59%) 39 0.46 977 (16.59%) 59
CSS animation attack (+ others) 212 0.56 1151 (19.54%) 932 (15.82%) 37 0.45 932 (15.82%) 62
Generic cosmetic rules only 98 0.51 881 (14.96%) 675 (11.46%) 35 0.40 675 (11.46%) 54

attack (1.76% less for ADGUARD and 0.68% less for UBLOCK),
even while only requiring generic rules. For both general and
targeted fingerprinting, the entropy and uniqueness decrease
(by around 0.1 for entropy in both datasets) as expected – with
added constraints on the template size – but remain relatively
high, similar to prior attacks [33, 44]. Seeing that entropy de-
creases less sharply than uniqueness means that many small-
size anonymity sets are still present in the dataset – which is
supported by looking at Figure 2.

Finally, looking at the distribution of anonymity set size com-
pared to the distance of the user’s filter list configuration from
the default in Figure 2, we can distinguish three major user
communities: (Upper Left) most users who slightly customize
their filter lists (less than 15 changes) and remain mostly anony-
mous (anonymity size ≥ 128 users); (Lower Left) some users
who become more identifiable (anonymity size ≤ 128 users)
despite editing only a few filter lists – this mainly includes
users that choose very rare filter list combinations; and (Lower
Right) advanced users fully customizing their ad-blockers for
optimal privacy and incurring high identifiability. The down-
ward arc defining the relationship between anonymity set size
and filter-list customization confirms our hypothesis that users
with advanced blocking are more susceptible to fingerprinting.

6.3 Fingerprint Stability

A unique fingerprint is not useful if it is not persistent over
time. The stability of a fingerprint is essential for an attacker

50%
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CDF of rules older than a given period

1400 1200 1000 800 600 400 200 0
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Figure 3: Cumulative Distribution of the age of filter rules us-
able in general fingerprinting. (Top) All usable rules. (Bottom)
Only for CSS animation attack. The dashed lines represent
equivalence set age distribution.

to link visits of the same user across time and monitor their
browsing history. Two predominant factors can change a user’s
ad-blocker fingerprint over time: (A) maintainers updating the
rules in filter lists and (B) users changing their subscriptions.
For every filter-list update (A), the attacker must re-run their
fingerprinting algorithm to update their templates (Section 4).
For (B), at best, the adversary can use proposed techniques to
link evolving fingerprints of the user [69] with varying success.

(A) Filter-Rule Stability. We track the stability of the rules
chosen by the general fingerprinting algorithm (later called
GF rules) during the last 1,400 days since data collection (three
years and 10 months). Checking every commit would be pro-



hibitively expensive given their high frequency and variabil-
ity – 21 minutes inter-commit time on average for AdGuard
(𝜎 = 1.32 hrs) and 30 minutes for uBlock Origin (𝜎 = 43 mins).
As a lower bound on stability, we sample filter-list versions at
specific dates – with intervals between dates increasing further
back in time – and check if the rules have changed. Further-
more, rules can be older than our estimation, as imperfect or
non-existent versioning of the filter-list repositories can prema-
turely stop tracking them. More details in Appendix C.2.
Results. First, a large portion of GF rules survives the 1,400
days: 35% (97.9K rules) for AdGuard and 21% (45.6K rules)
for uBlock Origin across all attacks; and 54% (50.9K rules)
for AdGuard and 26% (10.8K rules) for uBlock Origin across
attacks. We plot the age distribution of GF rules that disappear
in Figure 3. For AdGuard, 72% of GF rules are at least 1.5
years old. For uBlock Origin, as updates are more frequent,
90% of GF rules are at least 3 months old and only 23% older
than a year. Most rules disappear at specific time points, corre-
sponding to plot jumps. Manual investigations show that these
jumps are generally due to file renames and GitHub mirrors
not existing before those dates (examples in Appendix C.2).
Focusing only on the CSS animation attack in Figure 3 (Bot-
tom), we see more stability in GF rules, which exclude the
effect of domain-specific rules exploitable by Baseline attack
in Figure 3 (Top): 79% of AdGuard’s GF rules and 85% of
uBlock Origin’s GF rules survive for at least 357 days (almost
a year). This result aligns with our ad-blocker forum observa-
tions: maintainers avoid changing generic rules and introduce
exceptions and site-specific rules.

Moreover, the adversary only cares about the stability of
equivalence sets (Section 4.3). The best adversary strategy to
identify the equivalence set is to choose the set’s historically
old rules. In our datasets, most equivalence sets are stable in the
long term. For example, 99% of equivalence sets survive the
1,400 days for AdGuard and 93% for uBlock Origin with the
CSS animation attack (Figure 3). Overall, this stability is long
enough for the attacker to update their templates across the
websites they control. The redundancy of rules in equivalence
sets prolongs the adversary’s use of the same fingerprinting
template even if a specific rule expires.
(B) User Subscription Stability. Our datasets do not allow
us to faithfully study users’ subscription stability, as we only
have snapshots of the subscriptions they post on the forums.
Measuring the stability of user subscriptions would require a
comprehensive longitudinal study in which we would survey
the user’s filter-list subscriptions.

6.4 Utility of Domain-Specific Filter Rules
So far, we have focused on the impact of generic rules on the
fingerprinting template. In this section, we assume a hypothet-
ical worst-case adversary, able to collaborate with arbitrary
websites, to study the impact of domain-specific rules (ex-
ploitable by the Baseline attack) on filter-list coverage and

fingerprint quality. We quantify the impact of domain-specific
rules with the following approach: First, we extract from the
domain-specific rules all “activating” domains of these rules.
Then, we count the number of rules each domain can “activate”
for each filter list. Iterating over domains is not straightforward,
as we need to account for subdomains and top-level domain
relationships. Finally, we exclude already identifiable filter
lists with generic rules and count the number of new ones that
become identifiable with domain-specific rules for selected
domains. We share more about the method in Appendix C.3.

Results. We summarize the results for AdGuard in Table 5.
The table showcases statistics over two main breakdowns.
(1) breakdown by rule type. (2) breakdown by domain rank
according to Tranco [42]4. We do a breakdown by domain
rank, as we observe that some popular domains cover more
lists but might be unfit or not need this type of tracking (e.g.,
translate.google.*). The top 1K domains vaguely account
for “popular” domains, as taken by multiple measurement stud-
ies [27, 38, 39, 53]. A significant result is that the adversary
must control less than 13 domains to cover more than 99% of
filter lists across all rule types and domain ranks. An interesting
observation is that far more cosmetic rules are domain-specific
compared to blocking rules, contrary to what we observe for
generic rules (Table 3). So attacks relying on cosmetic rules
can benefit more from domain-specific rules than those relying
on blocking rules, e.g., with only one domain, the adversary
can detect 15 more lists with cosmetic rules compared to only 6
more for blocking rules. Finally, looking at Table 4 and Table 3,
we see that while the Baseline attack can detect seven more
lists than Lazy loading attack, they both achieve close entropy
and uniqueness results. This signals that the attacker’s benefit
from domain-specific rules is limited, and that more realistic
still adversaries achieve comparable success.

6.5 Attack Detectability

We analyze how well SoTA fingerprinting detectors can detect
our attacks. The most popular form of detectors uses machine
learning to classify specific JS scripts as fingerprinting scripts
or not [72], e.g., like FP-Inspector [39], FP-RADAR [17], and
Essential-FP [57]. This method can only detect the Baseline
attack, as the other attacks are scriptless.

Another type of detector monitors and classifies network
requests as fingerprinting or not based on their content (e.g.,,
URL parameters, headers, etc.), like FingerprintAlert [16]. As
our adversary only monitors if attack requests reach or not
as one-bit signals, they do not carry any content that could
serve as input for the classifier. An alternative would be to use
network volume as a proxy, but such an approach risks raising
too many false positives: The interquartile range of requests per
web page is 43 to 123; sites with 29 to 80 additional requests
from the attack still overlap with 50% of benign sites. We

4Available on https://tranco-list.eu/list/24P99/1000

https://tranco-list.eu/list/24P99/1000


Table 5: The impact of controlling specific domains on the filter-list coverage for AdGuard, broken down by rule type.

Rule Type All Blocking Cosmetic

Domain Rank All > 1𝐾 All > 1𝐾 All > 1𝐾

Unique Domains 137,760 137,147 27,007 26,609 128,123 127,541
Median Coverage1 2 2 1 1 2 2
Max. Coverage2 45 45 18 18 41 41

Baseline Identifiable Lists 71 / 84 71 / 84 70 / 84 70 / 84 58 / 84 58 / 84

Max. +L(1)3 +13 (100%) +5 (90%) +6 (90%) +6 (90%) +15 (87%) +6 (76%)
Max. +L(∞)4 +13 (100%) +12 (99%) +13 (99%) +13 (99%) +22 (95%) +22 (95%)
Min. Domains5 1 5 5 5 4 12

1 The median number of filter lists for which a domain has rules.
2 The maximum number of filter lists for which a domain has rules.
3 The maximum number of additional filter lists identifiable after controlling one domain.
4 The maximum number of additional filter lists identifiable after controlling as many domains as the adversary

needs. The percentage refers to the portion of the total lists covered.
5 The minimum number of domains the adversary needs to control to achieve Max. +L(∞).

also note that the number of attack requests can be further
reduced by changing the geometric construction of attacks
(each request corresponds to a specific combination of blocked
elements) [44], becoming more similar to benign sites’ traffic.

Finally, some ML-based approaches (like WebGraph [53]
and AdGraph [38]) model the relationships between web-page
elements, requests, and scripts for stateful tracking. These ap-
proaches do not target fingerprinting in their current form. Yet,
we posit that adapting them to classify fingerprinting scripts is
a promising avenue for future work.

7 Mitgation Resistance

While the proposed attacks can avoid detection by current
means, in this section, we explore several techniques filter-
list maintainers and browsers can perform to protect against
potential filter-list fingerprinting attacks. Any fingerprinting
mitigation technique falls into one of three categories: uni-
formity (all users have the same fingerprint), randomization
(randomize the fingerprinting features for a single user), and
blocking (preventing the attacker’s access to the sources of the
fingerprinting features) [72]. Contrary to other fingerprinting
paradigms, ad blockers cannot arbitrarily randomize what re-
quests they block or not. On the one hand, any allowed ATS
request can have profound privacy implications. On the other
hand, the usability and consistency of the ad-blockers are cru-
cial for user adoption [50]. In a recent user survey, Nisenoff
et al. [49] showed that most users faced with “abnormal” ad-
blocker behavior take actions that expose them to more track-
ers: 69% of participants would disable the ad-blocker on the
page, 8% would disable it globally, and 7% would uninstall
the ad-blocker completely. So, we disregard randomization
and only explore uniformity and blocking techniques. Another
easy-to-dismiss filter-list maintainer mitigation is adding ad-
blocker rules to block the attacker: Blocking attacker resources
is a common ad-blocker strategy against evasive ATS and anti-

0 2000 4000
Websites Sorted

10−1

101

103

Ad
di

tio
na

l P
ag

e 
Lo

ad
 T

im
e 

(%
) Page load time difference for adguard

default: 1k rules
mid: 4k rules
all: 8k rules

0 2000 4000 6000
Websites Sorted

10−1

101

103

Ad
di

tio
na

l P
ag

e 
Lo

ad
 T

im
e 

(%
) Page load time difference for ublock

default: 2k rules
mid: 6k rules
all: 7k rules

Figure 4: Page additional load time portion compared to load-
ing it without ad blockers in (%) for AdGuard (Left) and
uBlock Origin (Right).

ad-block providers [43]. Such strategies quickly become a cat-
and-mouse game of never-ending updates (of maintainer filter
rules and attack domains or parameters by the adversary) [59].

7.1 Disallowing Filter-List Customization

One seemingly obvious solution is limiting filter-list customiza-
tion altogether, either by restricting users to fewer filter lists
than before (e.g., the default filter lists) or more filter lists
than they would like (e.g., all filter lists). This approach causes
all users to have the same fingerprint, abolishing the threat
of filter-list fingerprinting. However, we identify three draw-
backs pertinent to the ad-blocker usability: (1) breakages due
to bad rules in some filter lists will affect all users and decrease
ad-blocker adoption [26, 49, 58]; (2)specific filter lists tackle
needs that are not universally accepted – like the Fanboy An-
noyances list, which removes additional elements that clutter
the page, although they are not ads – and certain users would
consider them examples of breakage or against their brows-
ing expectations; (3) enabling all lists carries a performance
overhead for the ad-blocker and the user’s browser for every
new page [59]. As users already expressed dissatisfaction with
unexpected ad-blocker behavior [49], we leave the quantifica-
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Figure 5: Iterations of increasing ad-blocker robustness by
fixing rules for all users leading to a decrease in fingerprint en-
tropy for AdGuard (Left) and uBlock Origin (Right). Legend:
Normalized entropy in solid lines, Number of rules in dashed
lines, Baseline attack, and CSS animation attack.

tion of the impact on user adoption and satisfaction through a
comprehensive user study for future work. However, the per-
formance overhead is something we can quantify. We did not
find any study that measures the impact of increasing filter-rule
count on the page load time. So, we adapt the methodology
from Roongta and Greenstadt [50], who measure various per-
formance metrics over multiple ad blockers, and conduct the
analysis on their same set of sites from Tranco [42] – the details
about the setup are in Appendix C.4.

Results. We report load time distribution across websites for
both ad blockers in Figure 4. First, we observe that uBlock Ori-
gin handles the increase in rule count better than AdGuard : run-
time only increases by a median of 0.052 seconds for uBlock
Origin and 514K additional rules, compared to 2.8 seconds
for AdGuard and 765K additional rules. We also note that the
increase in load-time is not linear, e.g., for AdGuard, using
119K or 417K rules is almost identical. We attribute this to the
fact that less popular lists – when included in the “all” filter-
list configuration – possess less optimized rules (e.g., more
complex regex rules) due to less scrutiny from the community.
Overall, this approach might not impact uBlock Origin users
as much as AdGuard users in terms of performance, but it will
still significantly impede user experience and cause breakage.

7.2 Increasing Filter-List Robustness
Rather than limiting users’ filter-list choices, maintainers could
modify the lists to be more robust to fingerprinting by removing
rules valuable for the attacks and globally enabling them for all
users. Since the attacker is not exhaustive and uses constrained
templates, if they re-run the algorithm, they might be able
to extract new rules from the updated lists. To evaluate this
defense’s success, we simulate iterations of this game between
the attacker and the maintainers, with the strategies described
earlier, until the attacker utility (entropy or uniqueness) drops
below a certain threshold or no more rules to extract.

Results. We plot the results in Figure 5. First, AdGuard re-
quires enabling far more global rules than uBlock Origin to

reduce entropy below 0.2. Against general fingerprinting with
the Baseline attack, AdGuard requires 820K rules, which is
6.8 times the maximum filter-list size, while uBlock Origin
requires 577K rules, which should not cause any problem with
load-time, as we saw in the load-time experiment Figure 4. The
CSS animation attack requires less than 442K rules for Ad-
Guard and 317K for uBlock Origin, which is still a significant
overhead but manageable. Also note that the same concerns
about breakage and user experience from the prior defense
(Section 7.1) still apply, although less severely. Overall, this
mitigation is a promising candidate for future work.

7.3 Disabling Browser Features
Browsers can try to block browser features essential for the
success of the proposed attacks. However, limiting browser
functionality is an aggressive approach that can harm the user
experience and cause breakage [39, 41]. We measure the preva-
lence of these features on the web to evaluate the impact of
disabling them, similarly to Lin et al. [44]. We adopt the setup
from Section 7.1 and successfully crawl 22,745 web pages
initially listed by Roongta and Greenstadt [50].
Results. For the complete overview of our findings, we refer the
reader to Table A2 in the appendix. In summary, the attacks’
high-level features are highly prevalent: 77% of pages use CSS
animations in their implementations. Looking at combinations
of features and low-level attributes for some attacks, a small
share of pages utilize them for usual purposes. We find 83 pages
that call HTTP requests in animation sequences – usually to
animate the rendered background in loops. However, blocking
these combinations requires case-by-case filtering at runtime,
which can be computationally expensive, e.g., checking if the
animation changes the background image URL requires enu-
merating all animation sequences (33 𝜎 = 132 on average).

As a takeaway, limiting browser features is a possible option,
especially for experimental features. Nevertheless, it can have
significant overhead on page load time for granular features.

8 Discussion

In this section, we discuss the implications of presented results
in Section 6 regarding the impact of filter-list fingerprinting
attacks on the relationship between ad-blocking and privacy.

8.1 Revisiting the Privacy Extensions Dilemma
Our work underscores the conflicting duality within privacy
protections, where efforts to enhance privacy can have detri-
mental effects on privacy. In our case, enhancing tracking
protection through custom filter list blocking can reduce user
anonymity through filter list fingerprinting.

This conflict is becoming increasingly relevant as users
rely on multiple PETs with high configurability to protect
themselves [66]. To our knowledge, only the work by Gulyas



et al. [33] has discussed this trade-off, in the context of web-
extension fingerprinting. The authors conclude that the benefit
of ATS blocking still outweighs the harm of fingerprinting
ad-blocker extensions. This conclusion relies on the fact that
excluding the ad-blocker from the set of fingerprinted exten-
sions does not decrease the fingerprint entropy. This might be
true when extension fingerprinting attacks extract at most one
bit from the presence or absence of extensions. However, our
work shows that it is possible to obtain multiple bits, as each
enabled filter list provides another bit of entropy. This increase
in information increases the privacy cost of installing the exten-
sion, especially for privacy-aware individuals with more unique
configurations (see Figure 2). On one hand, this risk cannot be
brushed off easily (Section 7), users must pay an inevitable cost
every time they deviate from the popular ad-blocker configura-
tions to more specialized ones. On the other hand, limiting all
users to the same filter lists is not straightforward (Section 7.1):
users do not agree on the boundary between content that should
be blocked or not, hence the fragmentation into multiple filter
lists. For example, the Fanboy’s annoyances list removes
“annoying” elements but is not necessarily ATS-related like
“Share on Facebook” buttons. Given the active maintenance
and large following of this list, we understand that disabling
it for all users will negatively impact the ad-blocking commu-
nity. Thus, addressing the privacy trade-off is non-trivial and
requires further exploration and attention from the commu-
nity. In sum, contrary to Gulyas et al. [33], we argue that the
dilemma is relevant and research looking into the privacy of
ad blockers should keep this angle in mind. We expand on our
recommendations to the community in Section 8.4.

8.2 Applicability beyond ad-blockers

In this work, we have focused on studying the information
extractable from ad blockers – concretely from their filter-rule
syntax. To this end, we have developed CSS and HTML at-
tacks that reveal whether a rule (with a given syntax, scope, or
type) is active in the browser. Our evaluation of two popular
ad-blockers (AdGuard and uBlock Origin) proves that config-
urable extensions leave a sufficiently fingerprintable footprint.

We now investigate whether our multi-bit fingerprinting
paradigm and attacks apply to non-ad-blocker extensions and
privacy browsers. For this, we identified ten extensions with
granular configurations among the most popular extensions on
the Chrome Web Store in three categories: (A) Security and
phishing protection: NoScript (100K users), MalwareByte
Guard (8M users), Netcraft (60K users). (B) Productivity and
distraction blocking: NBlocksite (1M users), LeechBlock NG
(80K users), MetaCert (10K users), Mindful Browsing (10K
users), StayFocused (500K users). (C) Browser theming: Sty-
lus (700K users) and Tampermonkey (11M users).

Most of these extensions do not fit our threat model for fin-
gerprinting: MalwareByte Guard has coarse and ill-defined
settings (e.g., “blocking malicious scripts") that are not con-

nected to deterministic, fingerprintable page manipulations;
StayFocused only allows page modifications for specific sites
(YouTube and TikTok) and thus does not enable tracking on
the web as a whole; Netcraft, Blocksite, LeechBlock, MetaCert,
CleanBrowsing, Mindful Browsing only block pages when they
are directly visited. While, theoretically, the presence could be
detected if their blocking occurred for subresources such as
iframes, given the extensions’ choice of blocking only top-level
navigation means our threat model cannot be applied.

For the remaining two extensions, Tampermonkey and Sty-
lus, the general principle of inferring multiple bits of entropy
based on their configuration applies. Although the concrete
implementation of the attacks is orthogonal to what our paper
proposes, we nonetheless outline here how this could be done.
Tampermonkey. allows to set and execute custom user scripts
when loading web pages. These scripts can impact CSS and
HTML in many more different ways than filter-list block-
ing because JS code is more expressive than filter rule syn-
tax. A possibility to automate the script-detection test is the
following: (1) first find all element selector statements (e.g.,
document.querySelector(".main")), (2) run the script on
a test page containing elements for each selector, and (3) com-
pare the element’s attributes with and without the script and
use those that vary to test whether the script is active. This
attack can be made scriptless by setting CSS rules to check for
specific element states (e.g., add a background image hosted by
the adversary only for .main if the element has small height).
Stylus. allows users to set custom CSS style sheets to modify
the browser theme. Stylus’ sheets allow for more arbitrary mod-
ifications to web elements than filter lists. Checking whether
specific styles are applied with JS is possible by querying the
.style dictionary of the element. Alternatively, it is possible
to detect certain stylesheets without a script: Either by using
the CSS container queries (Appendix A) to trigger background
image URLs pointing to the attacker domain, only if a specific
style on the element is applied (e.g., style(color: red)); or,
if the stylesheet contains element hiding statements, applying
the CSS animation attack on elements with this feature.

Finally, privacy browsers also contain particular configura-
tions. This is the case of the Brave Browser [19], which uses
filter lists, they highly overlap with both AdGuard and uBlock
Origin, and therefore our attacks apply seamlessly and would
likely obtain similar results.

8.3 Limitations and Future Work
The experimental limitations that we faced included approxi-
mation decisions to make the analysis feasible. Notably, while
studying the change in filter-list versions (Section 6.3), some
lists do not have a versioning system (like GitHub), so we
either find mirrored versions on GitHub if possible or omit
them completely. Regarding comparing rules, we only rely
on syntactical similarity (whether they look the same or not).
However, some rules might be functionally similar but look



different (e.g., both ##.ad and ##div.ad block div elements
with class .ad). We do not see a straightforward way to func-
tionally compare two rules other than attempting to apply them
on a test website, which would make the analysis prohibitively
expensive. Regarding studied filter lists, we omit any third-
party list the user might install from a URL in the ad blocker,
as the analysis would not be tractable. However, in such cases,
users would become more identifiable, and the analysis re-
mains a valid lower bound on uniqueness. Finally, regarding
our measurement studies in Section 7, we are subject to the
same limitations regarding the choices of sites as Roongta and
Greenstadt [50]. We would like to see future studies conduct
more comprehensive crawls to validate the impact of mitigation
on website usability, breakage, and performance.

8.4 Recommendations

In this section, we detail how the various parties involved
in the ad-blocking space can benefit from our method and
results to implement precautionary measures against the attacks
presented in Section 4.2.

Ad-blocker Maintainers. Ad-blocker maintainers could add
our fingerprinting analysis pipeline described in Section 4 to
continuously evaluate the fingerprinting susceptibility of their
user base and filter lists. They then could use the iterative ro-
bustness defense proposed in Section 7.2 to reinforce their
filter-list against identifying rules. As a more general guide-
line, filter-list maintainers should limit the number of generic
network rules as they are the easiest to fingerprint (Section 6)
or at least allow any image endpoint of blocked domains if the
case permits to prevent attacks relying on <img> elements (Ap-
pendix A). Regarding the CSS animation attack, the success
of the attack relies on the fact that ad blockers set the display
attribute to none, so they can experiment with different ways
to hide the element like playing around with visibility,
z-index, and pointer-events. Finally, AdGuard should ac-
count for the leak of browser history associated with automati-
cally enabling filter lists.

Privacy-Aware Users. Users aiming for better privacy protec-
tion should not have the false idea that more tools mean more
privacy. While choosing PET web extensions and configuring
them, users should be cautious in making their web behav-
ior stand out completely, e.g., including custom user rules or
third-party lists could become a user identifier.

Browsers. Browsers should be careful in adopting new CSS di-
rectives that can trigger conditionally based on network events
or granular web page states. For instance, the optimizations
regarding fetching background-image requests based on the
visibility of the DOM element should be more carefully in-
vestigated. Also, browsers should further investigate the CSS
container query attack as it forms a new covert channel be-
tween the CSS code and the rest of the browser’s environment.
We describe such an attack further in Appendix A.

9 Conclusion

By subscribing to additional filter lists, users can optimize the
ad-blocker to their personal browsing pattern (e.g., page lan-
guages) and their tolerance of breakage versus more aggressive
blocking. What at first appears to be beneficial for privacy
through more aggressive filtering, however, as our work high-
lights, has detrimental effects on a user’s privacy. We propose
several attacks (Section 4.2) that allow uniquely identifying
between 70% and 84% of the user’s active filter lists without
requiring easy-to-detect scripts.

We show that no more than 87 generic rules out of hun-
dreds of thousands are sufficient to recover fingerprints with
identical entropy to extracting all lists from original datasets
(0.72 for ADGUARD and 0.58 for UBLOCK) (Table 4). In conclu-
sion, customizing filter lists can reduce the anonymity sets of
privacy-aware users to less than a median of 48 users (0.2%
of the population) with just 45 rules with the CSS animation
attack) further than traditional fingerprinting attacks for which
they implement defenses.

We also show that it is hard to mitigate the proposed at-
tacks without penalty: users have to either pay in privacy (e.g.,
choosing to allow certain ATS) or performance and usability
challenges (e.g., adding niche rules for all users results in break-
age for users not benefiting from the rules). Yet, we propose
precautionary measures (Section 8.4) that users, ad-blockers,
and browsers can take to minimize the privacy risk.

We believe that the fingerprintability of ad-blocker cus-
tomization is a practical example of the privacy harm that
can arise when (ab)using Web PETs without appropriate care.
Further work should investigate hidden privacy compromises
in other privacy extensions, like Privacy Badger [8], VPNs,
Link Scanners, etc., both separately and in combination. This
will help the community better understand the privacy costs
associated with layering customized web-PETs.

Acknowledgments. We thank Jannis Rautenstrauch for his
early and detailed feedback on the manuscript and Sandra Siby
for her fruitful discussions and feedback on the work. We also
thank AdGuard’s Team for sharing internal statistics.

Ethical Considerations

We acknowledge the importance of the ethical implications of
conducting research, as reinforced by USENIX. Our work in-
cludes diverse experiments and data sources that we ensure are
ethically valid. We detail the ethical considerations regarding
our experiments in the following.

User data sources. we scrape publicly accessible GitHub fo-
rums for open-source (GPL-3) ad-blockers. Scraping GitHub
forums is standard practice in the privacy and security commu-
nity [26, 58], and only processes publicly accessible resources.
To ensure that public information about the forum authors
cannot be used to harm users with our proposed attacks, we



do not store any author’s personal information in our pipeline
and randomize the identifiers while ensuring that the iden-
tifiers for posts by the same user are the same. In addition,
ad-blocker maintainers employ proprietary methods that re-
duce personal information in posts, such as moderation and
submissions through bot intermediaries.

Proposed attacks. The attacks we propose do not rely on spe-
cific browser or ad-blocker vulnerabilities that were previously
undetected. Instead, we present simple techniques to utilize
CSS to demonstrate the inherent susceptibility of ad blockers
to detection. We provide attacks similar to prior stylistic at-
tacks previously known to the community, some of which are
already implemented [1]. As other fingerprinting works, we
provide these attacks as examples to raise awareness for the
larger security and privacy community and ad-blocker users
about the privacy cost of over-configuring ad blockers. As part
of our ethical duty, we explore ways to detect these attacks,
try to mitigate them and provide recommendations for appro-
priate protection against their potential risk. We also provide
our pipeline to identify problematic filter rules and eliminate
them. Overall, we believe the awareness benefit of disclosing
this risk to the community outweighs the potential attack im-
plementation – especially to ad-blocker maintainers and users.
This is consistent with the tracking literature, which states that
simply describing browser fingerprinting channels does not
require a private disclosure to immediate stakeholders.

Web measurements. We adopt the same precautions as the
large body of web measurement studies. We visit 22K web
pages at most thrice in sequence, giving ample delay (30 sec-
onds) between consecutive visits. We only visit publicly ac-
cessible pages, which do not require any prior consent from
the servers. We use only 10 parallel crawlers to constrain the
additional internet traffic volume. Also, we only load the pages
passively by loading the page and any associated resources for
about 10 seconds. Our crawlers do not interact with the web
server in any other way. All additional operations happen on
the front end in our browser instances without impacting the
services. Finally, the data we generate from the pages is purely
functional, including timing information and HTML element
counting. Overall, we believe our crawling techniques do not
harm servers, ad blockers, or other users.

Open Science

Adhering to the Open Science Policy, we make this work’s
artifacts (experiment code and data) available in zen-
odo.org/records/14736725. We also host the experiments’ code
on GitHub at spring-epfl/flfp. We also provide proo-of-concept
attack implementations and host exemplary honey pages on
flfp-demo.github.io. The source code at flfp-demo/flfp-demo-
builder. We do not implement the Baseline attack as it requires
collusion with 3rd-party domains. The attacks themselves use
no JavaScript, but we include scripts to simulate the attacker

server through service workers and visualize the output. We
manually hard-coded the rules to test for demonstration.

References

[1] How ad blockers can be used for browser fingerprinting,
. URL https://fingerprint.com/blog/ad-block
er-fingerprinting/.

[2] Fingerprintjs/fingerprintjs, . URL https://github.c
om/fingerprintjs/fingerprintjs.

[3] MDN Web Docs. URL https://developer.mozilla.
org.

[4] EasyList. URL https://easylist.to/easylist/e
asylist.txt.

[5] Ghostery, . URL https://www.ghostery.com.

[6] Ghostery Github Issues, . URL https://github.com
/ghostery/adblocker/issues.

[7] Peter lowe’s hostname blocklist. URL https://pgl.yo
yo.org/as/.

[8] Privacy Badger. URL https://privacybadger.org/.

[9] Ad Blocker Usage and Demographic Statistics in 2024,
2024. URL https://backlinko.com/ad-blocker
s-users.

[10] Adblock Plus. Adblock plus: How to write filters, 2021.
URL https://help.adblockplus.org/hc/en-us/
articles/360062733293-How-to-write-filters.

[11] AdGuard Software Ltd. AdGuard filters, . URL
https://adguard.com/kb/general/ad-filtering
/adguard-filters/.

[12] AdGuard Software Ltd. AdGuard AdBlocker Browser
Extension, . URL https://adguard.com/en/adguard
-browser-extension/overview.html.

[13] AdGuard Software Ltd. Adguard AdguardFilter Github
Issues, . URL https://github.com/AdguardTeam/A
dguardFilters/issues.

[14] AdGuard Software Ltd. How to create your own ad
filters, . URL https://adguard.com/kb/general/a
d-filtering/create-own-filters/.

[15] S. Agarwal, A. Fass, and B. Stock. Peeking through
the window: Fingerprinting browser extensions through
page-visible execution traces and interactions. ACM CCS,
2024.

[16] N. M. Al-Fannah. Towards A Better Understanding of
Browser Fingerprinting. PhD thesis, Royal Holloway,
University of London, 2019.

https://zenodo.org/records/14736725
https://zenodo.org/records/14736725
https://github.com/spring-epfl/flfp
https://flfp-demo.github.io
https://github.com/flfp-demo/flfp-demo-builder
https://github.com/flfp-demo/flfp-demo-builder
https://fingerprint.com/blog/ad-blocker-fingerprinting/
https://fingerprint.com/blog/ad-blocker-fingerprinting/
https://github.com/fingerprintjs/fingerprintjs
https://github.com/fingerprintjs/fingerprintjs
https://developer.mozilla.org
https://developer.mozilla.org
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easylist.txt
https://www.ghostery.com
https://github.com/ghostery/adblocker/issues
https://github.com/ghostery/adblocker/issues
https://pgl.yoyo.org/as/
https://pgl.yoyo.org/as/
https://privacybadger.org/
https://backlinko.com/ad-blockers-users
https://backlinko.com/ad-blockers-users
https://help.adblockplus.org/hc/en-us/articles/360062733293-How-to-write-filters
https://help.adblockplus.org/hc/en-us/articles/360062733293-How-to-write-filters
https://adguard.com/kb/general/ad-filtering/adguard-filters/
https://adguard.com/kb/general/ad-filtering/adguard-filters/
https://adguard.com/en/adguard-browser-extension/overview.html
https://adguard.com/en/adguard-browser-extension/overview.html
https://github.com/AdguardTeam/AdguardFilters/issues
https://github.com/AdguardTeam/AdguardFilters/issues
https://adguard.com/kb/general/ad-filtering/create-own-filters/
https://adguard.com/kb/general/ad-filtering/create-own-filters/


[17] P. N. Bahrami, U. Iqbal, and Z. Shafiq. Fp-radar: Lon-
gitudinal measurement and early detection of browser
fingerprinting. PETS, 2021.

[18] Brave. Brave community, . URL https:
//community.brave.com/c/support-and-tro
ubleshooting/ad-blocking/78.

[19] Brave. Advanced privacy, . URL https://brave.com/
privacy-features.

[20] Brave Community. Possible browser fingerprinting using
adblock filter lists, 2022. URL https://community.br
ave.com/t/possible-browser-fingerprinting-u
sing-adblock-filter-lists/365908.

[21] BrowserLeaks. Content Filters and Proxy Detection.
URL https://browserleaks.com/proxy.

[22] I. Castell-Uroz, R. Sanz-García, J. Solé-Pareta, and
P. Barlet-Ros. Demystifying Content-Blockers: Mea-
suring Their Impact on Performance and Quality of Ex-
perience. IEEE TNSM, 2022.

[23] S. Chalise, H. D. Nguyen, and P. Vadrevu. Your speaker or
my snooper?: Measuring the effectiveness of web audio
browser fingerprints. In ACM IMC, 2022.

[24] A. Datta, J. Lu, and M. C. Tschantz. Evaluating Anti-
Fingerprinting Privacy Enhancing Technologies. In ACM
WWW, 2019.

[25] DebugBear. Chrome Extension Statistics, 2024.
URL https://www.debugbear.com/blog/chrome-e
xtension-statistics.

[26] S. El Hajj Chehade, S. Siby, and C. Troncoso. Sinbad:
Saliency-informed detection of breakage caused by ad
blocking. In IEEE S&P, 2024.

[27] S. Englehardt and A. Narayanan. Online Tracking: A
1-million-site Measurement and Analysis. In ACM CCS,
2016.

[28] B. Eriksson, P. Picazo-Sanchez, and A. Sabelfeld. Hard-
ening the security analysis of browser extensions. In
ACM SIGAPP, 2022.

[29] Fingerprint.com. Server-side API. URL https://dev.
fingerprint.com/.

[30] Free Software Foundation Inc. Open Adblock Plus fo-
rums. URL https://forum.adblockplus.org/view
forum.php?f=6.

[31] Free Software Foundation Inc. Adblock Plus, 2024. URL
https://adblockplus.org/.

[32] G. G. Gulyas, G. Acs, and C. Castelluccia. Near-Optimal
Fingerprinting with Constraints. In PETS, 2016.

[33] G. G. Gulyas, D. F. Some, N. Bielova, and C. Castelluc-
cia. To Extend or not to Extend: On the Uniqueness of
Browser Extensions and Web Logins. In PETS, 2018.

[34] A. Gómez-Boix, P. Laperdrix, and B. Baudry. Hiding in
the Crowd: An Analysis of the Effectiveness of Browser
Fingerprinting at Large Scale. In ACM WWW, 2018.

[35] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk. Scriptless attacks: stealing the pie without
touching the sill. In ACM CCS, 2012.

[36] HTTP Archive. HTTP Archive: Page Weight. Technical
report. URL https://httparchive.org/reports/
page-weight?lens=top1m&start=2018_09_01&en
d=latest.

[37] U. Iqbal, Z. Shafiq, and Z. Qian. The ad wars: retrospec-
tive measurement and analysis of anti-adblock filter lists.
In ACM IMC, 2017.

[38] U. Iqbal, Z. Shafiq, P. Snyder, S. Zhu, Z. Qian, and
B. Livshits. Adgraph: A machine learning approach
to automatic and effective adblocking. IEEE S&P, 2020.

[39] U. Iqbal, S. Englehardt, and Z. Shafiq. Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprint-
ing Behaviors. In IEEE S&P, 2021.

[40] S. Karami, P. Ilia, K. Solomos, and J. Polakis. Carnus:
Exploring the privacy threats of browser extension finger-
printing. In NDSS, 2020.

[41] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine.
Browser Fingerprinting: A Survey. ACM TWEB, 2020.

[42] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
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A Extended Attacks

This section details other interesting attacks that exploit differ-
ent parts of CSS features and achieve comparable results.
Lazy loading attack. Lazy loading is a browser feature that
defers loading images until they are almost in view (e.g., im-
ages in a blog as the user scrolls down) [3]. Each browser
specifies a loading boundary: the maximum distance from the
viewport where the image element should be to fetch the image
request [3]. Our investigation also shows that, for each browser,
this distance is constant and independent of the viewport size,
e.g., for Firefox, the distance is 585 pixels below the viewport.
Relying on this functionality, the adversary can construct a
group of HTML elements as follows: A “witness” element –
an image, iframe, or block that will be hidden or blocked by the
ad-blocker – on top of a “signal” element – an image with the
malicious URL. The adversary positions the pair of elements
such that the loading boundary goes through the “witness”.
Only if the rule is active, the “witness” size goes to 0, and the
“signal” element crosses the loading boundary, triggering the
malicious URL request. We can disguise “witnesses” as Ad
containers or hide them with CSS, making the attack stealthy.
It is efficient as it sends a request only if the rule is triggered.
It can also work even if JS is disabled. However, this attack is
limited to generic (blocking or cosmetic) rules.
Experimental details. In this attack, the adversary moni-
tors which requests get triggered after an image crosses the
loading boundary. In practice, however, a user scrolling
through the page can trigger more images than expected. As
one solution, the attacker should monitor the request times-
tamps to differentiate between the batch of requests initially
above the boundary for blocked elements and the rest of the
signal images (requested later as the user scrolls). The horizon-
tal group signal images must always include a reference signal
image (“leader”) above the loading boundary, triggering first,
to which the rest are compared. All requests close in time to
the “leader” (modulo some threshold) make up the fingerprint
signal (i.e., blocked elements). More advanced solutions could
involve statistical tests to distinguish between blocked and
non-blocked signal requests. For websites with scroll, multiple
rows of such signal groups – with respective “leaders” – can
split the immediate increase in request count over batches.
CSS container query attack. W3C [70] recently intro-
duced container queries to allow developers to activate CSS
rules of one element based on the “computed” values (e.g.,
height or opacity) of other elements (containers). As the
browser renders each element, it merges CSS rules from
all loaded stylesheets to specify its’ “computed” CSS rules;
e.g., in absence of a declared width style, an image’s “com-
puted” width style will be the rendered width. The CSS
query @container style(display: none) { ... } exe-
cutes styles only if the container is rendered hidden. The at-
tacker can use this query to execute a background-image re-
quest only if a rule blocks the “container”. Before @container,

Chromium Firefox Webkit

Market Share [64] 72.44% 2.74% 18.39%
Popularity in ADGUARD 80.73% 14.81% 0.94%
Popularity in UBLOCK 53.22% 39.02% 0.00%

Baseline attack ✓ ✓ ✓
Lazy loading attack ✓ ✓ ✓
CSS animation attack ✓ ✓
CSS container query attack ✓ experimental

Table A1: Susceptibility of different browser engines to the
proposed attacks and the popularity of these engines in our
forum datasets.

“computed” CSS values could not be used as conditions to ac-
tivate other elements’ styles. Container styling is still experi-
mental. Nonetheless, we include the attack to show that new
CSS features can have unforeseen privacy implications.

B Excluded Data Sources

Here, we present additional investigated but excluded ad-
blocker forums, with the reasons for exclusion.

Adblock Plus Forum. Adblock Plus deploys a private issue
reporting system. While issue submissions include detailed
parameters about their browser and extension, we could not
find accessible and ethical manners to collect this data.

Ghostery Forum. The Ghostery ad blocker blocks trackers
based on the WhoTracks.Me tracker list [71] and third-party
lists (EasyList [4], Peter Low’s List [7], and uBlock Origin filer
lists [67]). As with other ad blockers, users can activate/deac-
tivate rules in their Ghostery extension. Though, unlike other
extensions, Ghostery defines coarse categories (e.g., “Adver-
tising”, “Site Analytics”, etc.) and options to block/exclude
specific ATS-domains rather than adding a switch for each fil-
ter list. We require a representative sample to understand if
users actively edit Ghostery’s unique settings, as opposed to
AdGuard and uBlock Origin’s filter lists. However, the exten-
sion does not forward issue posts to public issue forums but
rather to the support team via e-mail.

Brave Browser Filter-lists Forum. Brave uses a browser-
native ad blocker named “Shields” that relies on heuristics
for advanced privacy measures (e.g., CNAME uncloaking), on
top of content blocking through proprietary and third-party
filter lists (e.g., EasyList [4]). Users can activate/disactivate
filter lists in the browser settings. To post issue reports, most
users use the brave community forum in the “Ad-Blocking”
category [18]. These posts do not include the detailed browser
filter-list configurations.



C Experimental Details

C.1 Building User Filter-List Datasets

We extract the filter list names from the configuration tables
of each user post with custom parsers. However, filter lists can
be referred to with multiple names depending on the post’s
creation method (e.g., automatically by the ad-blocker, man-
ually by the user, etc.). So, we manually build an alias table
and normalize the names to the official names used by the
Ad-blocker in question. We also record metadata such as the
browser and OS if our keyword-based heuristics find any.

C.2 Estimating Filter-Rule Stability

Due to the high frequency of commits to filter-list repositories,
we sample commits only at specific points in time and monitor
which rules remain, marking a lower bound on the age of these
rules. We face three main challenges in recovering prior filter
list versions. (1) Some filter lists are compiled dynamically
from many sources using a script and published on dedicated
websites. (2) Some filter lists are not hosted on GitHub. Fortu-
nately, we found GitHub mirrors for some lists in (1) and (2)
that pull the latest version of the lists at constant intervals of
time,e.g., thedoggybrad/easylist-mirror, which we used
as approximated history. In some cases, these approximations
are not ideal, as ad blockers might lag slightly behind – by
pulling older versions rather than the latest GitHub version.
(3) Finally, many filter lists are not versioned at all, with only
the latest version accessible through web endpoints (e.g., Peter
Lowe’s Blocklist [7]). Moreover, for efficiency, we do not track
whether filter lists were renamed, moved, split up, or recom-
bined in the past; in all these cases, we consider the rule absent,
in line with the lower bound on the rule lifetime. That leaves us
with 75 (86%) available filter lists for ADGUARD and 62 (91%)
for UBLOCK. We study the filter-list histories for 1,753 days
before their download date. We start sampling day by day, then
gradually increasing the intervals to months and years.

Examples of rule versioning limitations. Examples:
Change in files lassekongo83/Freewits-filter-lists, uBlock-
Origin/uAssetsCDN; Earliest “Easylist” mirror commit:
thedoggybrad/easylist-mirror.

C.3 Domain Coverage Over Filter Rules

In addition to generic rules, we want to compute the added
benefit of a Baseline attack adversary in triggering domain-
specific rules by controlling the domains that trigger these
rules and injecting elements or requests to be blocked. To de-
termine the best domains to control, we implement the follow-
ing steps. First, we extract all domains mentioned in domain-
specific rules, e.g., the rule example.com##.ad1 would trig-
ger only on example.com. Next, we count the number of rules

each domain appears in and across filter lists. Counting re-
quires care as (1) subdomains will trigger rules only speci-
fying the root domain (e.g., |example.com$img triggers for
blog.example.com) and (2) “Any TLD” rules match all do-
mains with a specified prefix (e.g., |example.*$img triggers
for both example.com and example.org). So, for each full
domain, we add the rule count for all matching parent domains
(suffixes) or “Any TLD” domains (prefixes). We adapt multiple
data structures (like “tries”) and optimizations to make the ex-
periment more efficient. Next, to choose the optimal domains
to control, we perform an iterative algorithm:

1. Start with the identifiable lists from the generic rules

2. Repeat while not all lists identified: (2.1) For each domain,
find the number of unidentified lists where at least one
rule exists for this domain. (2.2) Select the domain with
rules from most unidentified lists. (2.3) Mark the domain
and update the identified lists to include those identifiable
with the domain. (2.4) If no new domains are identifiable
by any domain, stop the loop.

By the end, the sequence of chosen domains minimizes the
steps required to achieve maximum coverage of filter lists.

C.4 Ad-blocker Overhead Experiment
We extend the setup from Roongta and Greenstadt [50] by vary-
ing the active filter-list configurations for AdGuard and uBlock
Origin between default, mid (activate the 30 most popular lists
in our datasets), and all lists. We perform the measurements
on 3K sites from the set using 20 crawlers (Docker containers)
on an Intel Xeon Platinum 8160 with 192 cores. Similar to
Roongta and Greenstadt [50], we use Chrome v.113. For more
details about the methodology, kindly refer to their paper.

C.5 Filter-list Distance Metric
We compute this distance as the cardinality of the symmetric
difference between two filter-list subscription sets 𝑑 (𝐴, 𝐵) =
|𝐴Δ𝐵 | = |𝐴∪𝐵 | − |𝐴∩𝐵 | – this distance keeps an intuition of
the magnitude of altered filter lists.

D Attack Detectability Details

We describe the evasion characteristics of our proposed attacks
to SoTA fingerprinting detection techniques proposed by the
literature. We identify and discuss three detection strategies:

JavaScript-based detectors. These detectors classify whether
specific JS scripts fingerprint the user or not [72]. Famous
examples include FP-Inspector [39], FP-RADAR [17], and
Essential-FP [57]. Out of our attacks, only the Baseline attack
relies on a script and could be susceptible to this detection.
Other attacks are scriptless and not applicable.

https://github.com/lassekongo83/Frellwits-filter-lists/commit/367f3bf27d944faeb94bf8294897118ff394391a
https://github.com/uBlockOrigin/uAssetsCDN/commit/d575d3a3f1abb821b4e6e7507150526c31a37c9e
https://github.com/uBlockOrigin/uAssetsCDN/commit/d575d3a3f1abb821b4e6e7507150526c31a37c9e
https://github.com/thedoggybrad/easylist-mirror/commit/e6de0acf75fc2904ff331c4541cbf22782c1a208


Table A2: In-the-wild usage of attack-relevant web features.

Feature Nb. webpages

Total Successful Visits 22,745

CSS container query attack

CSS includes @container 676 (2.97%)
CSS includes @container + style 6 (0.03%)

Lazy loading attack

Image is lazy loaded 7,814 (37.33%)

CSS animation attack

Site use CSS animations 17,116 (77.07%)
Animate background 7,289 (32.82%)
Animate background image 117 (0.53%)
Fetches Image in animation 83 (0.37%)

Baseline attack

Site includes iframes 14,156 (62.24%)
Scripts have or call postMesssage 621 (2.73%)
Received message events 609 (2.68%)

Network-based detectors. These detectors flag the network
requests emitted by browsing pages containing fingerprint data.
While ad-blockers are rudimentary list-based network detec-
tors, some studies like FingerprintAlert [16] introduce more
advanced network monitoring. They flag a request as finger-
printing if the body or parameters includes values from 17
common fingerprinting values (e.g., OS version, Resolution,
etc.). In our attacks, individual requests contain no interpretable
information. Instead, the attacker server extracts the fingerprint
vector from the set of requests reaching them from the tar-
get (for blocked rules). So, detecting our attacks depends on
whether the increase in request number is perceptible. Accord-
ing to an HTTP Archive [36] report over the top 1M sites within
the last 3 years, the interquartile range of HTTP requests per
page is between 43 and 123 requests with a cumulative size be-
tween 1,300 and 5,300 KB. Focusing on image requests, each
site requests 13 to 45 requests, with a cumulative size between
300 and 2500 KB. The requests from our attacks do not contain
data, so their impact on total network size is negligible. How-
ever, we can see that – depending on the mask size (Table 4)
– attacks can send anywhere between 29 and 80 additional re-
quests per page, and detectors tuned for the interquartile range
would flag them. However, such detectors would still have a
significant false positive rate as they overlap with the remain-
ing 50% of web pages. The adversary can avoid such detection
through two main techniques: (1) generate smaller masks with
less uniqueness, or (2) use geometric constructions described
in a related stylistic fingerprinting attack [44] and send only
𝑚 = 𝑘 (log(𝑛/𝑘) +1) requests for 𝑛 tests, (i.e., for 62 rules only
16 requests if 𝑘 = 3).

Activity-graph detectors. These detectors use advanced tech-
niques to model the execution of the webpage and interactions
of its various components (like scripts, DOM elements, re-
quests, etc.). Two prominent examples are WebGraph [53] and
AdGraph [38]. Both techniques construct a graph where enti-
ties are web components, and edges between them represent
a causal relationship. For example, if a script creates a new
HTML image element that requests domain.com/image.png,
the graph would include a DOM create edge between the script
and the HTML element and a request source edge between the
element and the network. The overall graph summarizes the
activity happening on the page. These techniques are powerful
at modeling logical representations of different activities like
fingerprinting or adding tracking cookies, etc. because these
representations are invariant, e.g., any fingerprinting activity
must trigger a network request. While WebGraph and AdGraph
are more tailored for stateful tracking and JavaScript-based
tracking, their graph representation can easily be appropriated
to focus on relationships between DOM elements, CSS styles,
and network requests invariant in our attacks.

In conclusion, no readily available technique can detect our
proposed attacks in the wild with acceptable certainty. On
the one hand, JS and network detectors can be circumvented
through careful tuning of attack components. On the other
hand, future graph-based techniques optimized to detect this
type of fingerprinting require a comprehensive evaluation of
CSS instrumentation, which we leave for future work.
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Figure A1: Filter-list popularity distribution among AdGuard
users in the dataset provided by the AdGuard’s team and our
own ADGUARD forum dataset . We omit lists with a popularity
of less than 0.005 in both datasets.
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