
SINBAD: Saliency-informed detection of breakage caused by ad blocking

Saiid El Hajj Chehade
EPFL

Sandra Siby
Imperial College London

Carmela Troncoso
EPFL

Abstract—Privacy-enhancing blocking tools based on filter-list
rules tend to break legitimate functionality. Filter-list main-
tainers could benefit from automated breakage detection tools
that allow them to proactively fix problematic rules before
deploying them to millions of users. We introduce SINBAD, an
automated breakage detector that improves the accuracy over
the state of the art by 20%, and is the first to detect dynamic
breakage and breakage caused by style-oriented filter rules.
The success of SINBAD is rooted in three innovations: (1) the
use of user-reported breakage issues in forums that enable the
creation of a high-quality dataset for training in which only
breakage that users perceive as an issue is included; (2) the use
of ‘web saliency’ to automatically identify user-relevant regions
of a website on which to prioritize automated interactions
aimed at triggering breakage; and (3) the analysis of web-
pages via subtrees which enables fine-grained identification of
problematic filter rules.

1. Introduction

Privacy-enhancing blocking tools [1, 2, 3, 4, 5] operate
either by blocking network requests or by hiding elements
rendered on a webpage. Blocking tools primarily rely on
filter lists (e.g., EasyList [6] or EasyPrivacy [7]) that are
manually curated by a small community of maintainers.
These filter lists contain rules that describe which resources
should be blocked or hidden during a web-page load.

While applying these rules, blocking tools can cause
legitimate parts of a webpage to stop functioning, a phe-
nomenon commonly known as breakage. Breakage causes
negative user experience, affects adoption of blocking
tools [8, 9], and prevents the tools’ developers from adopting
aggressive blocking policies, reducing the protection these
tools could provide [10].

Filter-list maintainers typically fix breakage upon reports
from users, in a slow and burdensome process. This pro-
cess could be automatized to detect when changes in filter
lists’ rules cause breakage and revert those changes before
those updates impact millions of users. However, automatic
detection of breakage is very challenging for two reasons.
First, it is hard to automatically trigger breakage induced
by user interactions, e.g., a video does that does not play;
and second, breakage detection has a subjective component:
a blocked video ad and a blocked legitimate video exhibit
technically the same page behavior, but cause a different user
experience:. Thus, it is difficult to collect breakage samples

that can be used to train breakage detectors. Moreover,
breakage is often hard to reproduce due to legitimate changes
on the website, 3rd-party APIs, and URL paths.

In this paper, we introduce a pipeline that enables train-
ing of machine-learning-based breakage detectors. We use
this pipeline to build SINBAD, a breakage detector that
uses web ‘saliency’ – which is a proxy for the importance
of elements within a webpage – to prioritize interactions. To
account for subjectivity, we extract breakage instances from
ad-blocking forums where users report breakage issues; and
to avoid including breakage caused by other causes than
filter-list rules, we only include in the training issues where
we have evidence that the issue generated a filter-list fix.

Our contributions are as follows:

• We build a high-quality dataset for breakage detec-
tion from user-reported breakage issues on forums.
We find that breakage reports take from days to
weeks to be resolved, highlighting the importance of
automated breakage detection tools that allow main-
tainers to be proactive. We also find that dynamic
breakage corresponds to 25% of breakage issues and
that CSS-hiding filter-list rules are a ≈ 53 % of rules
causing breakage on average, neither of which are
covered by state-of-the-art detectors [11].

• We show that it is possible to automatically iden-
tify important, ‘salient’, regions on a webpage, and
prioritizing automated interactions in these regions
enables the discovery of user-relevant breakage with
much less effort than random interactions.

• We propose SINBAD, a saliency-informed breakage
detection system that identifies breakage with 20%
better accuracy than the state of the art. SINBAD
correctly classifies breakage that previous approaches
miss by design, such as dynamic breakage after user
interactions, and content breakage stemming from
CSS-based filter rules. SINBAD identifies broken
regions of a page instead of classifying entire pages,
enabling fine-grained fixing of blocking rules.

2. Background & Related Work

Many ad and tracking services (ATS) blocking tools rely
on manually-curated filter lists (e.g., [6, 7, 12]) to block ATS,
e.g., AdBlock Plus [1], uBlock Origin [2], Ghostery [3], Ad-
Guard [13], extensions or in-browser protections in browsers
such as Firefox [14], Edge [5], and Brave [4]. Maintainers

of ad-blocking tools typically rely on manual (often, vi-
sual) verification of a small subset of websites to determine
whether blocking causes loss of legitimate functionality on
websites (breakage) that could lead to negative user experi-
ence. To address the scalability and robustness issues of man-
ual curation [15, 16, 17, 18, 19], the ad-blocking research
community has proposed machine-learning approaches to
automate the detection of ATS [20, 21, 22, 23, 24, 25].

Neither manual nor automated ATS-detection approaches
include extensive checks to proactively identify rules that
cause breakage. Maintainers address breakage issues in a
reactive manner when users of ad-blocking tools report
breakage [26, 27, 28]. Maintainers replicate the breakage
issue via manual checks, find the filter-list rule(s) that caused
the issue, and update the(se) rule(s).

Our work complements existing ATS detection tools by
enabling maintainers to determine, proactively and at scale,
whether new or fixed filter-list rules cause breakage.
User studies on breakage. Mathur et al. [8] investigate
user attitudes towards online tracking and the measures users
took to protect themselves. Their study found that breakage
was relatively uncommon. Nisenoff et al. [9] find a higher
prevalence of breakage and propose a taxonomy of user
experiences of breakage by analyzing public user reviews
and issue reports of popular blocking tools. In our work,
we use breakage issue reports as a source of training data,
considering only reports for which there is evidence that
breakage occurred due to a filter-list rule.
Heuristics-based breakage detection. Previous works
quantify breakage via various heuristics either in place of,
or in addition to, manual checks. Krishnamurthy et al. [29]
use the number of visual elements on a page as a metric
to calculate page quality; Yu et al. [30] measure how often
users reloaded a page; Jueckstock et al. [31] quantify the
similarity in edge sets between graph representations of a
page with and without a policy applied to it; Fouquet et
al. [32] use heuristics based on analyzing documentation
and common knowledge of practices in the field; Le et
al. [33] detect visual breakage by comparing the number
of visible non-ad images and text before and after applying
an intervention; Amjad et al. [34] use the differences in the
number of functional HTTP requests and HTML tags with
functional src attributes; Castell-Uroz et al. [35] measure
visual differences of website screenshots with and without
blocking, and manually verify the results.

All the above approaches cover only static breakage that
does not require user interaction to trigger it. Yet, from 25 up
to 44% of user-reported examples of breakage are dynamic
(see Section 3) and cannot be detected by these approaches.
In addition, metrics based on counting the number of visual
elements, requests, or tags are influenced by webpages’
natural dynamism – pages can fetch different numbers and
types of resources, leading to variations in these counts –
which leads to errors in detection. We show that SINBAD
outperforms all these approaches in Section 5.4.
Machine-learning-based breakage detection. To the best
of our knowledge, there exists only one machine-learning-

based breakage detection approach. Smith et al. [11] build
a classifier trained on graph representations of page-load
events and use the EasyList commit history to label data. We
show that using the commit history can result in incorrect
ground-truth labeling; and that SINBAD outperforms Smith
et al.’s approach by 20%. Furthermore, SINBAD correctly
classifies dynamic breakage that is missed by design in[11].
Other approaches to avoid breakage Existing alternatives
to avoid breakage, such as automatically replacing tracking
JavaScript code with alternatives that preserve functional-
ity [36], are hard to deploy due to scalability issues.

3. Obtaining Breakage Examples

In this section, we describe the methodology to collect
user-reported breakage issues from public ad-blocker forums
and determine whether they are suitable as training data
for SINBAD. The main characteristics we consider are (1)
validity, i.e., a post represents a breakage that is caused by a
filter-list rule, (2) automatability, i.e., the post can be easily
parsed to extract breakage details to enable replication, and
(3) reproducibility i.e., we can recreate the reported breakage
issue. We also discuss the limitations of existing breakage-
detection systems given the classes of breakage users report.

3.1. Data sources

We investigate three public data sources. We select these
data sources because, in all of them, maintainers link to
a GitHub commit when resolving issues, giving a strong
indication that breakage was caused by a filter-list rule, as
opposed to errors due to other factors (e.g., programming
errors or slow load times). The sources are:
EasyList. The EasyList “Report incorrectly removed con-
tent” public forum is where users report issues caused by the
EasyList [6] filter lists [37]. Users’ posts typically include
the URL of the broken webpage and a description of the
experienced breakage, and may contain images illustrating
this breakage. Users may also point to the filter-list rule that
they think caused the breakage. When breakage is due to
filter-list rules, the filter-list maintainers update the filter lists
and post a link to the EasyList GitHub commit of the fix.
uBlock. The uBlock Origin’s uAssets GitHub issue tracker
is where users of the tool [2] report instances of break-
age [27]. Posts in the issue tracker have four subsections:
URL, category, description, and screenshots; although users
can deviate from this format. The maintainers of the tool
reply to breakage reports with a link to the uBlock GitHub
commit of the fix and close the issue.
AdGuard. The AdguardFilters GitHub issue tracker [28] for
the AdGuard ad-blocker [13]. The structure of the posts
is very similar to the uBlock repository, but issues are
submitted through the ad-blocker interface. All posts have
the same structure and feature the test URL first, followed
by screenshots, and system configuration (which filter lists
the user had installed). The maintainers of this forum add

labels to the issues, clearly identifying breakage, in addition
to other relevant information for our study such as “could
not reproduce”. The issues on AdGuard’s issue tracker are
more recent than the other two sources, indicating that they
are more likely to be reproducible.
Sources we do not include. We do not consider two data
sources that have been used in previous work. We do not use
marketplace reviews of ad-blocking extensions where users
might report breakage [9], as we cannot know with certainty
whether user-reported breakage was the result of a filter-list
rule. We also do not include GitHub issues from Privacy
Badger [9], because Privacy Badger relied on heuristics
instead of filter lists till October 2020.

We also analyzed other sources in the ad-blocking space,
and discarded them for various reasons: lack of replies that
enable us to identify filter-list-related breakage [26, 38];
limited number of breakage examples [39]; issues being
unrelated to block-related breakage (e.g., tailored to com-
patibility across browsers [40]).
Ethical considerations. All the posts and issues we analyze
are from publicly-available data sources. We do not collect
or process any identifiable information such as usernames.
Our data collection and analysis procedure was approved by
our institutional ethics board. Prior to data collection, we
informed the maintainers of the forums of our practices.

3.2. Dataset Collection and Processing

Our breakage issues’ collection process works as follows.
For each issue, we collect the post title, the creation times-
tamp, the post URL, and the (cleaned) post content. We also
collect the filter lists that are most likely to have created the
breakage and the filter lists that fix this breakage (we also
collect the maintainer’s commits to the filter-list repositories
where they established the ‘breaking’ and ‘fixing’ filter lists).
We summarize the collected data in Table 1.
EASYLIST. We scrape the posts in the EasyList forum using
Beautiful Soup [41]. We first crawl the main forum page to
obtain a list of links to the issues’ posts. From this list, we
filter issues that have the Locked tag, indicating maintainers
have addressed them. For each of these issues, we store
the title, the creation date, and the post URL. We disregard
issues that have no commit URLs by the maintainer in the
post replies. Removing all the non-fixed issues, we obtain
7,900 breakage examples since 2006.
UBLOCK. We use the GitHub API to
scrape the issues in uBlock’s repository
(uBlockOrigin/uAssets/issues), filtering posts
that contain the keywords “breakage”, “Breakage”, or
“[Breakage]” in the title. We keep only closed issues
(state=closed) if they have a commit to a fix. We extract
the title, timestamp, post URL, the filter lists used by the
user during the breakage (as declared in the post), and the
moderators’ commits to uBlock GitHub in the responses.
We obtain 638 resolved posts over a period of 5 years.
ADGUARD. We use the GitHub API to scrape Ad-
Guard resolved breakage issues with the T: Incorrect

Table 1. OVERVIEW OF BREAKAGE DATASETS.

Dataset Identifier # Scraped # Included Usable Timespan

EasyList forum EASYLIST 7900 1344 2006-2022
uBlock Origin issues UBLOCK 638 543 2017-2022
AdGuard Filters issues ADGUARD 8992 2605 2015-2023

Blocking and A: Resolved labels. We extract the same
information as for UBLOCK. We use keyword-based heuris-
tics (details in the appendix) to extract the URL of the broken
page provided by the user and manually find the URL for
issues where our heuristics fail. We obtain 8,992 scraped
fixed issues published between 2015 and 2023.
Differences with respect to Smith et al. [11]. Smith et al.
assume that all commits that update the filter list are a fix to
breakage happening on the URL appearing in the message
of the commit. By studying the issues in the forums, we
observed that, in many cases, resolving a breakage issue
often requires multiple rounds of iterative fixes based on
user feedback, which is reflected in multiple commits by
the maintainers (18% of our EasyList issues). This leads to
their dataset containing samples where breakage is not fully
fixed, introducing noise in the classifier training.

To make sure we collect only filter lists that result in
breakage and that fix it, we use the times of the posts of
maintainers in the forum. We use the first response of the
maintainer that has an update commit to identify the ‘break-
ing’ list, assuming that the list that best approximates the
one causing the breakage in the issue is the one prior to that
update. To identify the ‘fixing’ list, we use the last commit
associated with the issue, assuming that when the interaction
between users and maintainers stops it is because the issue
is fixed. This greatly reduces the number of examples we
can obtain compared to Smith et al., but provides better
guarantees that samples represent true breakage and fixing.
We manually test 10% of our samples to validate that this
assumption is correct.

A second difference with respect to the approach of
Smith et al. [11] is that in their experiments, they only
use the filter-list rules altered in the commit, rather than the
full lists. Our manual checks reveal that such an approach
results in many instances of breakage not being triggered,
also resulting in noisy training data. The reason is that in
some cases breakage is caused by interdependencies between
rules, instead of a particular rule. For example, an altered
filtered rule that is an exception to a non-altered blocking
rule. If used on its own, it has no effect. We illustrate this
problem in Appendix A.1. In our experiments, we always use
the complete filter lists at the time of breakage and fixing.

3.3. Dataset Analysis

3.3.1. Need for automated breakage detection. We first
validate that fixing issues is a time-consuming process by
computing the average Fix time of the issues: the time
difference between the time a user published a post reporting
an issue and the time of resolution (marking the issue as
fixed or closed). We identify a fixed issue as any closed

2014201520162017201820192020202120222023
Forum issue creation year

0

500

1000

1500

N
um

be
r

of
 in

cl
ud

ed
 p

os
ts

0%
0%

0%
17%

35%

42%

48%
60%

55%17%
50%

100%

81%
76%

55%

85%

80%

96%
EasyList
Ublock
Adguard

Figure 1. Number of issues that we can process and have alive test URLs,
annotated with their proportion from all issues created in that year.

issue having at least one commit from the maintainer. We
find that the fix time varies significantly across issues and
across the two datasets. Users needs to wait, on average,
14 (Std: 194) days on average before the issue is fixed on
EASYLIST, 36 (Std: 136) days on UBLOCK, and 5 (Std: 20)
days on ADGUARD.
Takeaways. Since the wait time for resolving breakage
issues can be fairly large (in the order of months for
EASYLIST and UBLOCK), it would be very beneficial to
have an automated tool such as SINBAD to test for breakage
before updating filter lists publicly.

3.3.2. Automatability and Reproducibility. We analyze
our data sources to ensure they are suitable as training data.
Post structure. The structure and format of posts in the
forums evolved over time due to changes in forum-posting
guidelines and users changing their breakage description
patterns. We use a heuristic inspired by the most recent
and frequent posting patterns to extract the information
of interest described in the previous section. We also test
whether the mentioned URL is still alive or not. If any of
these two operations fail, we discard the post.

We show the percentage of issues that we can properly
parse per year in Figure 1. For EASYLIST, we only consider
the 1,344 issues after 2016, as we cannot parse any issue
before that year. For UBLOCK, we consider all 543 issues
that we can parse. Finally, in ADGUARD, we find few parsing
problems, and we stop the scraping in 2020 for storage and
time constraints, obtaining 2,605 posts.
Reproducibility. Prior work [11] relied on heuristics based
on network activity to determine reproducibility, which we
find to be inaccurate (Section 5).

We conduct a manual evaluation of breakage repro-
ducibility to characterize the quality of our data sources. We
follow three criteria. If the user specifies geographic limi-
tations, login requirements, or other unavoidable challenges
(unclear description, complex interactions required, etc.), we
mark the issue as not reproducible. Next, we check if the
site is still live and, when present, if the site matches the
screenshots in the forum. If any of these fail, we mark the
issue as not reproducible. Finally, we load the breaking filter
list scraped for this issue and follow the instructions given by
the user to compare our experience with their complaints and
screenshots, e.g., checking for missing images, unclickable

9 days
12 months,

20 days
25 months,

1 day
37 months,

12 days
49 months,

24 days
Duration between issue creation and reproducibility evaluation date

100

101

102

N
um

be
r

of
 in

cl
ud

ed
 p

os
ts 4 months

cut-off point EasyList
Ublock
Adguard

Figure 2. Plot showing the number of reproducible issues according to
the duration between the time when the issue was created and when we
evaluated whether it can be reproduced.

buttons, scrolling impossible etc. If the results do not match
the post content, we mark it as not reproducible. If the issue
passes all checks, we consider it reproducible.

We analyze 170 posts in EASYLIST (13% of total
posts), 57 posts in UBLOCK (10% of total posts), and 209
posts in ADGUARD (8% of total posts). We find that around
41% of EASYLIST’s issues, 38% of UBLOCK’s issues, and
66% of ADGUARD’s issues are reproducible. This proportion
decreases rapidly as the issues become older (see Figure 2).
For EASYLIST, fewer than 50% of the issues are repro-
ducible for issues created one year before our analysis. For
UBLOCK, we can only reproduce 16% of the issues older
than 5 months and only 50% of those that were reported
in the 4 months before the analysis. Thus, we restrict our
manual analysis to 17 months for EASYLIST and 5 months
for UBLOCK. In ADGUARD, we can reproduce more than
76% of issues in the last 4 months – before it drops sharply.

The main causes of non-reproducibility for the datasets
are: the page being outdated/changed (25% in EASYLIST
and 36% in UBLOCK), the domain no longer being active
(7% in EASYLIST and 12% in UBLOCK), the page not
being accessible e.g., URL to a deleted blog post (4% in
EASYLIST and 40% in UBLOCK), and the page being
behind a login wall (4% in EASYLIST). Other note-worthy
reasons are different geographic zones, complex interaction
sequences, and browser-specific issues.
Take aways. Our analysis shows that the utility of forums
as sources for breakage research is limited by posts struc-
ture inconsistencies and the lack of reproducibility. For the
latter, the main reason is that webpages change over time
(more than 25% of the unreproducible issues), meaning that
datasets expire over time. As a result of these problems, after
removing non-parseable and non-reproducible forum issues,
the size of both EASYLIST and UBLOCK datasets shrink
by 98% and 70% respectively, from 7,900 in EASYLIST to
just 170 and from 638 in UBLOCK to just 203. Thus, in our
experiments we mainly use the 512 ADGUARD issues from
the last 4 months that we can easily parse and reproduce;
and only use EASYLIST and UBLOCK for validation.

3.3.3. Breakage characterization. We study the the kind of
reported breakage to understand the extent to which previous
work can address user experiences.

Filter-list rule type. In general, filter-list rules are catego-
rized into two groups: blocking rules and content rules.

Blocking rules are applied at the network level to deter-
mine whether to block a particular network request. Break-
age caused by blocking rules can be replicated offline – for
example, we can log all the requests that occur during a page
visit without an ad-blocker and then perform rule-matching
to simulate the decisions of an ad-blocker on the requests.

Content rules are used to hide particular elements on
a page or to insert snippets that fight complex advertising
strategies on the webpage. To hide elements, ad blockers
inject “styling” attributes to change how the browser renders
an element (e.g., changing the height to zero). Snippets differ
among ad blockers. They might implement unique scripts to
be embedded in a page or more complex blocking strategies.
Content rules cannot be analyzed offline because they cause
DOM-specific behavior and run JavaScript, which requires
a running browser.

Analyzing our datasets, we find that EASYLIST issues
are caused by 62% blocking, 32% content, and 6% mixed
rules; UBLOCK issues are caused by 36% blocking, 60%
content rules and 4% mixed; and ADGUARD issues are
caused by 26% blocking, 58% content, and 16% mixed. The
larger presence of content rules in UBLOCK and ADGUARD
might be attributed to the fact that those filter lists are used
in ad blockers, which support a wide variety of snippets and
complex hiding techniques. EASYLIST, on the contrary, is
designed to be compatible with most ad blockers, and hence
uses fewer complex hiding techniques.
Prevalence of dynamic breakage. We also study whether
breakage is static – it does not require user interaction (e.g.,
a missing video), or dynamic – it requires at least one user
interaction such as clicking, scrolling, or typing to determine
that there is a problem with the page (e.g., the video section
might load correctly, but pressing play will result in no
outcome). From our manual checks, we find that dynamic
breakage accounts for 25% in EASYLIST, 44% in UBLOCK,
and 26% in ADGUARD.
Takeaways. Given that breakage caused by content rules
accounts for a considerable portion of breakage, offline
approaches that log network activity and perform post-
processing to trigger breakage [11] are not sufficient. To ob-
serve content-rule breakage, in contrast with previous work,
SINBAD must use an online approach in which it fetches
webpages. We also observe that a large portion of issues are
due to dynamic breakage. Yet no previous work can address
them. Our training-samples collection ensures that SINBAD
accounts for dynamic breakage (Section 4.1.2).

4. SINBAD: Detecting website breakage

Figure 4 shows an overview of our automated breakage
detection approach, SINBAD. The SINBAD pipeline con-
sists of three steps.
1. Saliency-informed crawling. SINBAD receives a dataset
of webpage URLs as input. It visits each pages three times
– without a filter list, with the breaking version of the

list, and with the fixed version of the list. In each visit,
it executes interactions with elements that are core to the
user experience identified by a saliency detector. Interactions
enable SINBAD to trigger dynamic breakage.
2. Differential subtree creation. For each page, SINBAD
uses the visit data to create an annotated version of the DOM
tree. It updates the nodes in the DOM tree with information
such as associated network requests or crawler interactions.
For each pair of visits to a page, SINBAD extracts dif-
ferential subtrees: the sections that changed between the
DOM trees from the two visits. These subtrees represent the
modifications caused by the filter-list change to the DOM,
requests, and interactions.
3. Subtree classification. SINBAD extracts content, struc-
tural, visual, and functional features from each subtree. It
labels each subtree as broken or not, depending on changes
undergone by the subtree and which pair of filter lists were
used in the visits. SINBAD uses the labeled subtrees to train
a classifier that predicts whether a subtree reflects breakage.

4.1. Saliency-informed Crawling

Dynamic breakage, which has not been considered in
prior work, constitutes a large portion of the breakage that
users experience (see Section 3). Reproducing such breakage
is challenging, greatly hindering the collection of data points
to train a classifier. To address this issue, SINBAD performs
saliency-based interactions, interactions focused on webpage
elements particularly relevant to users.

4.1.1. Identifying Web-salient Areas. Breakage is, by defi-
nition, an interruption in the expected user experience. Users
are more likely to interact with, and complain about, ele-
ments of interest on a page rather than peripheral elements.
Collecting valuable breakage samples, thus, is intimately
related to being able to predict users’ areas of interest within
a webpage and their interactions with them so as to trigger
potential dynamic breakage of relevance for the user.

Borrowing the term from computer vision [42], we refer
to elements of interest for the user as “salient” elements.
In computer vision, salient regions refer to sections of an
image or a video that catch the eye of an observer. In a
web context, sections that catch the eye are not necessarily
of interest to the user [43]. Elements such as ads, banners,
or call-to-action buttons would be labeled as salient from a
pure computer vision perspective, but they are of no interest
to the user, and unlikely to be considered as breakage if they
would not be rendered. Because of this, traditional saliency
detection techniques cannot be directly applied to the web
context [44, 43, 45].

In this paper, we define web-salient areas of a webpage
as groups of DOM nodes that are an essential component to
fulfill the purpose of a user’s visit to the web page. Existing
approaches to webpage-saliency detection fall into three
categories. First, those that use DOM-structure features, e.g.,
number of children of a node, tree depth, number of
tags, etc. [46, 47, 48]. Second, those that use features ob-
tained from webpage screenshots and image data and classify

Figure 3. Overview of SINBAD. The pipeline consists of three phases: (1) Saliency-informed crawling: SINBAD detects salient elements on the page,
and runs three crawls – with no filter lists, broken filter lists, and fixed filter lists. Crawls execute interactions with salient elements to trigger dynamic
breakage. (2) Differential subtree creation: SINBAD uses the changes in the page’s DOM tree between pairs of crawls to create differential subtrees. (3)
Subtree classification: SINBAD extracts features and labels from the subtrees to train a classifier that can classify subtrees as broken or not.

on a pixel level [49, 50, 51]. Third, hybrid approaches [52]
that attempt to remediate the fact that the DOM alone may
fail to capture the presentation of a webpage to the user,
e.g., in pages where styling rules denote positions of specific
nodes on the screen. Besides using screenshots as visual
features, some methods also use CSS styling like background
color, font size, etc. [53].
SINBAD’s hybrid salient-areas classifier. In SINBAD,
we implement a hybrid approach based on structural features
from the DOM and visual features from CSS styling.

We opt to not take a vision-oriented approach based on
screenshots for two reasons. First, in SINBAD, saliency de-
tection is part of a crawl. As we aim to visit as many pages as
possible, we need to minimize each page’s processing time
and storage. Deep learning vision models typically used for
saliency map prediction, like CNNs (Convolutional Neural
Networks), FCNNS (Full CNNs), and RCNNS (Residual
CNNs), have high computation and storage overheads [42].
In addition, vision-oriented models output smooth saliency
maps, which we would need to map to DOM elements,
increasing the processing time. In contrast, approaches based
on DOM and CSS only need to process and store a small
number of expert-defined features and use simpler, inter-
pretable models that require little computation, e.g., random
forests or XGBoost. They also allow us to label the group
of DOM nodes directly without transformations.

To train our saliency classifier, we need a labeled dataset
of salient and non-salient parts of a webpage. To this end, we
need to first, segment webpages into blocks; second, label
those segments; and third, extract features for training.
Segmentation. Prior to detecting salient areas, we need to
segment the webpage into semantic blocks. Semantic seg-
mentation is the process of grouping HTML nodes to form
a semantic block with a meaning to the user, e.g., grouping
the text fields and the button nodes of a login form.

Web segmentation is a longstanding active research
field [54].Despite the development of many approaches,
including those based on deep-learning [55, 56], Kiesel et al.

showed that VIPS [57], a simple rule-based method, is equal
to or better than recent approaches in terms of segmentation
granularity and efficiency [54]. VIPS is a top-down heuristic
algorithm that iteratively divides a webpage into a hierarchy
of blocks [57]. Blocks are divided based on DOM features
and visual cues (CSS attributes, position features, fonts,
etc.). In every iteration, VIPS subdivides blocks further.
The number of allowed iterations is a hyperparameter that
controls the granularity of the block hierarchy.

To account for the shifts in web design since VIPS’s
inception, we fine-tune a VIPS Python implementation [58]
to include features introduced in HTML5, e.g., iframes and
media-oriented features. More details about our changes
can be found in Appendix B.2. Figure B.2, left, shows an
example of VIPS segmentation of a webpage into semantic
groups (red rectangles).
Labeling. The datasets used in previous work are not suit-
able for our purpose. They either used features inaccessi-
ble to us (e.g., eye-tracking data), output formats that are
different from our modeling task (e.g., drawing a pixel-
by-pixel saliency heatmap) [43, 49], or were kept private
[54, 46]. Thus, we curate our own dataset. Following Kiesel
et al. [54], we select 1K websites from Alexa’s top 1M
sites, consisting of the top 100 sites and 900 randomly
sampled sites. We remove web pages that have fewer than 64
elements [59], which leaves us with 543 sites. We split the
sites into five batches, and have two volunteer annotators
per batch. The annotators returned labels on 74% of the
websites. The rest were either reported by annotators as
unusable or skipped by mistake. We obtain a maximum 65%
and mean 55% Krippendorff alpha agreement measure [60]
between pairs of annotators. To address the weak inter-
annotator agreement, we only consider groups considered
salient by both annotators as salient. At the end of the
process, we obtain 329 salient blocks, agreed on by both
annotators, and 3,268 negative blocks. This imbalance is
expected, as salient elements are, by definition, a small
percentage of regions on a webpage.

Feature extraction. We compute features in four categories:
structural, e.g., number of nodes in a semantic group; con-
tent e.g., the number of tags; positional, e.g., (x,
y) coordinates; and visual, e.g., color contrast. As Smith
et al. [11], we rank the features according to Leave-One-
Covariate-Out [61] referred to as AUC Loss. We compare
the AUC of a modified dataset, leaving one feature out, with
the AUC of the original dataset. Higher AUC loss implies
greater feature importance. Although this metric does not
capture the relationships between features, it provides a
basic understanding of the feature’s impact on the model.
We find a balance between presentation-specific features
(positional and visual) and DOM-specific features (mainly
content features) between the top features, suggesting that
a hybrid representation is important to predict saliency. We
report the complete list of features and their predictive power
in Table 5.
Model architecture and results. We use a random forest clas-
sifier with 100 estimators. To account for the imbalance in
our dataset, we use SMOTE [62] to over-sample the salient
minority class. Our classifier achieves a mean 83 ± 0.05%
AUC, and 62 ± 0.09% F1 score for the salient class over a
5-fold cross-validation. We verify these results by visually
inspecting 10 pages. Due to the output differences between
our approach and other works [46, 50, 51], direct comparison
is not possible, but our F1 and AUC are consistent with prior
works’ reported performance.

4.1.2. Interacting with salient elements. Once we identify
salient blocks, we need to determine which type of interac-
tions should we perform on the elements in those blocks to
trigger breakage. Additionally, we need to develop a method
to collect relevant information resulting from the interaction.

We call interaction an action sequence performed on a
target element. We pre-define a set of actions and potential
target element types. Then, during crawls, we search among
the salient elements for an appropriate target. We consider
two interactions: Typing and Click. For a Typing interaction,
the action sequence consists of clicking on the target, typing
a random sequence of characters, and hitting enter. Viable
target candidates for typing interactions are<textarea/>
or a text input field. In our proof-of-concept, we use only
these two interaction types, but SINBAD’s extensible design
allows for new and more complex interactions to be easily
integrated based on the maintainers’ needs.

In addition to the network requests and page-content
changes that we collect during the visit, we capture
JavaScript runtime errors thrown after an interaction. This
allows us to capture dynamic breakage triggered when one
or more of these scripts are blocked. For example, dependent
scripts, that rely on variables defined in blocked scripts,
would raise a ReferenceError, and capturing these er-
rors may help to detect this breakage.

4.1.3. Crawl implementation. We use OpenWPM
v0.20.0 [63] to automatically crawl websites with Firefox
100.0. We augment OpenWPM with the commands to:
install the ad-blocker, load the filter lists from files, dump

the DOM data and salient nodes, and perform interactions
on salient blocks.

Prior work [11] ran two visits per website – with and
without the filter-list rules that contribute to breakage. They
then created a graph that captures the changes between the
graphs obtained in the visits. These differences may include,
on top of the broken change in the page, ads that are
legitimately blocked by the broken filter list.

In our work, we run three visits per website: a visit using
the filter lists resulting in breakage, (𝐶𝐵), a visit using the
fixed versions of filter lists (𝐶𝐹), and a visit without any filter
lists (𝐶𝑁). Before each visit, we reset the browser to keep the
visits independent. Running three visits enables us to reduce
the number of false positives with respect to previous work.
We perform 𝐶𝐹 first, assuming that visiting the webpage
with a fixed list will contain all relevant functionality for
a user and have the least number of ads. During 𝐶𝐹 , we
identify salient regions and execute interactions on these
regions. We repeat the interactions during 𝐶𝐵 and 𝐶𝑁 .

By the end of the visit, in addition to network requests
and JavaScript calls, we log data previously unaccounted for
in OpenWPM. This includes the DOM tree representation
of the page. We also store the HTML attributes and visual
cues of nodes in this tree. Visual cues include data like the
position on the screen, the dimensions, the text content of an
element, the background color, and font size. We also store
interaction timestamps, their targets, and JavaScript errors.

After running the SINBAD pipeline on the ADGUARD
dataset, we find that saliency reduced the interaction candi-
date search space from 40 elements on average per website
to 2 to 3 elements per website (less than 6%). We also argue,
in Section 5, that saliency and interactions overall provide a
significant predictive contribution.
Ethical Considerations. We designed our crawling process
to minimize the likelihood of harming the websites we visit
by overloading the resources or sending data that impacts
the site’s services during the three main stages where the
crawler operates on the web page – accepting cookie ban-
ners, collecting static data, and interacting with the page.

To not abuse server availability, we leave at least 50
seconds between visits to the same webpage.

To avoid hamful interactions we do the following. First,
to accept cookies as a real user, the crawler uses a keyword
heuristic to identify cookie banners and click the accept
button. Since many breakage incidents happen due to a
broken cookie banner, we deemed this interaction necessary.
This action does not raise any ethical issues as the website
expects this action from any user.

Second, to collect the DOM data, we inject a JavaScript
script that reads and parses the DOM tree without triggering
any request to the web server. We also use standard Open-
WPM data collection methods, which strictly read data from
the webpage. In addition, the data we collect is from publicly
accessible pages with a fresh browser session (we leave a 20-
second buffer between sessions to prevent overload). Hence,
there are no possible sensitive data leaks in this step.

Third, while performing interactions, to ensure our in-
teractions don’t negatively impact visited web pages (e.g.,

submitting form data), we limit our interactions to one target
per sequence. We also prevent elements from the same
salient group from being selected successively and choose
the target-interaction pairs at random, weighted by their
saliency. These interaction limitations prevent unintended
inputs sent to the server like form filling which requires
at least two actions on two distinct targets (fill and submit).
We recognize that when filling inputs, data may be collected
by the server, either as part of auto-completion features
(which do not result in storage of unintended information)
or exfiltrated as part of tracking collection practices happen-
ing before form submission (which we do not consider as
an ethical issue as this information should not have been
collected in the first place).

4.2. Differential subtree creation

We process the data we obtain from the crawler visits to
create differential subtrees as follows:
DOM augmentation. The output of our interactive visit
includes HTTP requests, scripts, DOM trees, and interactions
that occurred during a page visit. We augment the DOM
trees with HTTP requests by creating edges between the
requests and the requesting element. For example, if an
image element triggers a request to image.com, we add
the edge: → image.com.

We also add interactions to nodes in the subtree. In the
case of errors, we also add the associated error type. For
example, if clicking a button led to a reference error, we
add the edges: <button> → <click> → <Reference
error>.

Given a visit to webpage 𝐴, we produce an augmented
DOM tree 𝑇𝐴 and an environment graph 𝐺𝐴. The graph 𝐺𝐴

contains nodes and edges representing more relationships
between scripts, requests, and the DOM. One important rela-
tionship captured by the graph is whether a script “touches” a
DOM node, i.e., whether the script queried the node at some
point during its lifetime. The intuition behind capturing this
relationship is that if a script tried to query a DOM node, and
then it was blocked or altered, the queried DOM node might
be part of the breakage associated with the alteration of the
script. Many features from 𝐺𝐴 turn out to be important for
classification, see Section 5.
Subtree extraction. Smith et al. [11] classify whole pages
as broken or not. Instead, we opt for classifying sections of
a page, referred to as subtrees. This enables us to separate
legitimate blocking of ads from actual breakage of function-
ality within a broken page. We evaluate the utility impact of
the subtree approach in Section 5.

Given two DOM trees 𝑇𝐴 and 𝑇𝐵 for two webpage visits
𝐴 and 𝐵, a differential analysis of 𝑇𝐴 and 𝑇𝐵 returns a
common tree 𝑇𝐴,𝐵 containing all nodes that are the same
across the visits, and a set of differential subtrees 𝛿 ∈ Δ𝐴,𝐵

that represent changes in the tree structure when going from
𝐴 to 𝐵. We provide an example in Figure 4. A differential
subtree 𝛿 can be of three types: ADDED to 𝑇𝐴, REMOVED
from 𝑇𝐴, EDITED between 𝑇𝐴 and 𝑇𝐵.

<section>

<video> GET request
a.com/video

Interaction

<section>

<video>

Interaction

GET request
b.com/img

<section>

<video> GET request
a.com/video

Interaction

GET request
b.com/img

GET request
b.com/img

<video>

GET request
a.com/video

Tree for visit A
𝑻𝑨

Tree for visit B
𝑻𝑩

Common Tree (in blue)
𝑻𝑨,𝑩

Subtree 1
Added

Subtree 2
Removed

Differential sub-trees 𝚫𝑨,𝑩

Figure 4. Subtree extraction example for the difference going from visit 𝐴

(top left) to visit 𝐵 (bottom left). We can see the common tree in blue (top
right) 𝑇𝐴,𝐵 and the differential subtrees set Δ𝐴,𝐵 (bottom right).

4.3. Subtree classification

In order to train a classifier that predicts whether a
subtree is broken, we extract features from the subtrees and
label them.
Labelling. We examine three transitions, 𝐶𝑁 → 𝐶𝐹 , 𝐶𝑁 →
𝐶𝐵, 𝐶𝐹 → 𝐶𝐵. We label subtrees with one of three possible
labels – Broken, Legitimate, Neutral– as follows:
Legitimate: A Legitimate label indicates that a sub-
tree was modified by a filter-list rule for legitimate reasons,
i.e., it was involved in ads or tracking. Such subtrees are
likely to represent an ad/tracker that was blocked/hidden
only by changes in the new filter list. We assign this label
if a subtree is removed or edited in the visit transitions 𝐶𝑁

→ 𝐶𝐹 or 𝐶𝐵 → 𝐶𝐹 . If a subtree is removed/edited from no
filter lists to the breaking filter list (𝐶𝑁 → 𝐶𝐵), the label of
the subtree is inconclusive, as both broken or legitimately
blocked subtrees can undergo this modification from intro-
ducing a breaking filter list. To have a conclusive label, we
need to look at whether the subtree was removed/edited in
𝐶𝑁 → 𝐶𝐹 ; if it is blocked in both versions, then we assign
the Legitimate label.
Neutral: A Neutral label indicates that a subtree was
modified, but the modification was caused due to factors
independent of the filter list, e.g., page dynamism. We assign
this label if a subtree is added in 𝐶𝑁 → 𝐶𝐹 or 𝐶𝑁 →
𝐶𝐵. As rules remove/edit elements, this must be caused by
events outside of a filter list. For 𝐶𝐵 → 𝐶𝐹 , the result
is inconclusive, as the subtree might also be caused by
wrongly-blocked content that got fixed in the new filter list.
In this case, we also look at whether the subtree was added
in 𝐶𝑁 → 𝐶𝐹 ; if it was, we assign the Neutral label.
Broken: A Broken label indicates that the subtree repre-
sents web elements that were broken due to a filter-list rule.
We assign this label if a subtree is removed or edited in 𝐶𝑁

→ 𝐶𝐵 but not in 𝐶𝑁 → 𝐶𝐹 . This implies that there was
breakage, as the subtree only exhibited removal/edits on the
introduction of the breaking filter list. For 𝐶𝐵 → 𝐶𝐹 , if a
subtree is added, the result is inconclusive as it might also

Figure 5. Decision tree to label the subtree given the ground truth origin
of the visits (𝐶𝐹 : visit with fixing filter list, 𝐶𝐵: visit with breaking
filter list, and 𝐶𝑁 : visit with no filter lists). The labeling also depends on
what happened to the subtree between the two visits in question (ADDED,
REMOVED or EDITED)

be wrongly blocked content that got fixed in the new filter
list. In this case, we confirm that the subtree was not added
in 𝐶𝑁 → 𝐶𝐹 to assign the Broken label. If the subtree was
added, then we assign the Neutral label.

We illustrate the relation of the labels with the visit
transitions and subtree behavior in Figure 5.

Feature extraction. We extract features primarily from the
generated subtrees. However, we also use the additional edge
information from the environmental graph (see Section 4.2)
to extract how scripts, JS errors, and interactions are related
between nodes in the subtree and the rest of the page.

We extract features within two scopes: global features
that are computed over all the subtrees for the same web
visit or global statistics from the envrionment graph statis-
tics (e.g., script-node edges), and subtree features, that are
computed per subtree. Most global features are aggregations
of the subtree features for all subtrees on the same page.

We extract four categories of features as follows:
1. Content features, which relate to the content of a node in
the subtree. We divide these features into four groups based
on the role of the HTML tags: Layout, Text, Input/Output,
and Others. Layout tags are related to organizational compo-
nents like <div> and . Text tags are tags representing
any verbal content, like <p> and <h1>. Input/Output tags
represent either input fields like <input> or information
display like <video> and . For each group, we
count the number of nodes in visit 𝐴, and the number of
tags removed, added, and edited from 𝐴 to 𝐵.
2. Structural features are those related to the position of a
node within a subtree, a subtree within a page, or connectiv-
ity and ancestry relationships among nodes. These include
features such as the depth of a subtree, the average number
and variance of children per node, and the total number of
subtrees added, removed, or edited from 𝐴 to 𝐵.
3. Visual features that cover changes in subtree size and
position on the screen. We also count the number of salient
nodes within a subtree, the number of salient nodes covered

by the subtree’s footprint on the screen, as well as the
changes in these numbers from 𝐴 to 𝐵.
4. Functional features are those that relate to crawler interac-
tions and the resulting JavaScript events in a subtree. These
features capture the effect of script activity and crawler
interactions on breakage. They include errors generated by
interactions in a subtree or changes caused by scripts on
a page (such as elements created or removed by scripts)
computed across the environment graph and the subtrees.
Classification. We classify subtrees as Broken,
Legitimate, or Neutral. We experiment with
four classifiers: XGBoost, Random forest, SVM (Support
vector machines), and MLP (Multi-layer perceptron).

In order to obtain page-level classification from subtree
classification, we use two heuristics. The first heuristic,
SINBAD-K𝑘 , labels a page as broken if we find more than 𝑘

broken subtrees. The second heuristic, SINBAD-R𝑟, labels
a page as broken if the ratio of broken subtrees to all subtrees
is more than 𝑟

100 .

5. Evaluation

5.1. Classification performance

Subtree-level evaluation. After labeling the ground truth
on the ADGUARD forum dataset according to Section 4.3,
we end up with 3,752 (55%) legitimate subtrees, 1,712
(26%) broken edit subtrees, and 1,301(19%) neutral sub-
trees. To address the imbalance across classes, we try the
following re-sampling techniques to augment the training
data: Random Over-sampling which oversamples, at random,
the minority (broken) class; Random Under-sampling which
undersamples, at random, the majority (legitimate) class;
and, SMOTE [62], which generates synthetic data points
from the minority class as a linear combination of chosen
samples.

In conjunction with the different re-sampling techniques,
we evaluate multiple classifiers to label trees: a random for-
est classifier, XGBoost – known for its robust performance in
unbalanced datasets [64], a support vector machine (SVM)
classifier, and a basic Multi-Layer Perceptron with 3 layers
and 100 nodes per layer. We follow standard practices and
remove features with constant values or negligible variance,
imputing empty values with 0 – as the features are primarily
counts, and applying standard scaling (𝑥′ = 𝑥−𝜇𝑥

𝜎𝑥
). For each

model, we do a 5-fold cross-validation.
We find that SMOTE resampling gives the best results

and that all classifiers perform similarly (all results are
within the standard deviation). We use XGBoost in the rest
of our experiments which has an AUC of 86% ±0.02, 75%
precision, and 63% recall on Broken subtrees.
Page-level evaluation. To compare with prior work [11],
we perform a page-level evaluation using the heuristics
described in Section 4.2 to convert tree predictions into
page-level labeling of the filter-list change as either break-
ing or legitimate. We predict breakage on a holdout set

Table 2. VALIDATION ON UBLOCK AND EASYLIST DATASETS. LABEL: B=BROKEN , L=LEGITIMATE

Evaluation Dataset Training Dataset Reproducible AUC Accuracy B Precision B Recall L Precision L Recall

EASYLIST ADGUARD - 0.74 0.74 0.62 0.74 0.72 0.60
EASYLIST ADGUARD ✓ 0.80 0.80 0.76 0.71 0.70 0.76
EASYLIST ADGUARD × 0.71 0.71 0.59 0.75 0.72 0.55
EASYLIST EASYLIST ✓ 0.72 0.72 0.65 0.63 0.62 0.64

UBLOCK ADGUARD - 0.84 0.84 0.85 0.77 0.77 0.85
UBLOCK ADGUARD ✓ 0.87 0.87 0.95 0.77 0.75 0.95
UBLOCK ADGUARD × 0.83 0.83 0.79 0.76 0.78 0.80
UBLOCK UBLOCK ✓ 0.80 0.80 0.87 0.70 0.40 0.57

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

SINBAD-K1

SINBAD-K3
SINBAD-K5

SINBAD-R05
SINBAD-R10

SINBAD-R15
SINBAD-R20

SINBAD-R50

Figure 6. True positive rate and false positive rate of SINBAD page-level
heuristics evaluated on the ADGUARD validation dataset. SINBAD-K𝑘 is a
count-based heuristic that labels a page as broken if it contains at least 𝑘

broken subtrees. SINBAD-R𝑟 is a ratio-based heuristic that labels a page
as broken if the ratio of broken subtrees to all subtrees is at least 𝑟%.

of 218 forum issues (143 breaking issues and 75 non-
breaking issues). This holdout dataset ensures there is no
data leakage using issues that we use to train SINBAD.
We parametrize our count-based heuristic SINBAD-K𝑘 with
𝑘 ∈ {1, 3, 5}; the ratio-based heuristic SINBAD-R𝑟 with
𝑟 ∈ {5, 10, 15, 20, 50}. The best-performing heuristic is SIN-
BAD-K1 with an 86% accuracy and 85% AUC score (see
Figure 6). Our heuristics perform better with a small value of
the parameters because broken subtrees are a minority, and
finding at least one is a strong sign of breakage. Increasing
the threshold only decreases true positives without having
much impact on false positives. It is possible that fine-tuned
heuristics, more complex crawling implementations, and
better-quality datasets would yield even better performance.

Generalization. We validate our results by evaluating
SINBAD on EASYLIST and UBLOCK. We train models
on these datasets, and also test whether the model trained
on ADGUARD transfers well. We train both on reproducible
issues and on all issues. We report the results in Table 2.

Overall, SINBAD generalizes well. On EASYLIST, the
model trained on ADGUARD achieves an 80% AUC on
reproducible issues, while it drops to 74% for all issues.
Retraining on EASYLIST results in a performance decrease,
which we attribute to the low number of broken subtrees
in EASYLIST (992 broken sub-trees). On UBLOCK, the
model trained on ADGUARD achieves an 87% AUC and a
high 95% broken subtree precision on reproducible issues,
while it drops to 84% on all issues. Re-training the model
on UBLOCK, on the other hand, results in 80%, where the

decrease stems again from the reduced set of training data
(only 783 broken subtrees in UBLOCK).

5.2. Feature Analysis

We analyze the feature importance of XGBoost, ranking
features based on the AUC loss metric. We report the top-10
ranking in Table 3 (full ranking in Table 6 in Appendix).

The top features of the classifier do not belong to a spe-
cific feature category or scope. Their diversity indicates that
classifying breakage is multifaceted, i.e., detecting breakage
cannot be reduced to one aspect of the page visit, e.g., only
visual features. We highlight that the “number of salient
elements” ranks 2nd, confirming that saliency is used to
prioritize breakage detection. We provide further evidence
of the importance of saliency in Appendix A.2. We also see
that features generated from interaction on the DOM are
very relevant, exemplified by the number of changes in the
number of elements queried by scripts after an interaction
(ranked e.g., 6th. This validates our intuition that capturing
these relationships, via our DOM tree augmentation, is help-
ful to detect dynamic breakage. Finally, counts of elements
with visual impact on the user (e.g., text modifiers, elements
that determine the layout, or forms and figures) have a strong
AUC loss impact. We conjecture it is because they capture
the semantic role of the subtree within the page. When those
user-relevant elements are removed, they trigger breakage.

Table 3. TOP FEATURES ACCORDING TO AUC LOSS PREDICTIVE POWER.
SCOPE: S=SUBTREE, G=GLOBAL. CATEGORY: V=VISUAL,

S=STRUCTURAL, F=FUNCTIONAL, C=CONTENT

Scope Cat. Description

1 S V Subtree page coverage before the filter rule edit
2 S V Number of salient elements in the subtree
3 S S Average degree of subtree nodes
4 G F Number of requests added
5 S F Δ in elements queried by a sub-tree-related script.
6 S F Δ in elements queried after subtree interactions.
7 G F Number of requests removed t
8 S C Number of tags considered Text added
9 S F Number of interactions with the subtree.
10 S C Number of tags considered Text removed

Static Breakage Dynamic Breakage

101

102

Fr
ac

tio
n

of
 is

su
es

 in
 g

ro
up

Breakage Types

True Positives
False Negatives

page
video

overlay

div button

img
anti-adblock

iframe

form
text

nav bar

script
search input

table
footer

header

100

101

Fr
ac

tio
n

of
 is

su
es

 in
 g

ro
up

Element Types

True Positives
False Negatives

Figure 7. SINBAD errors depending on breakage type (top) and type of
element broken (bottom)

5.3. Manual analysis of errors

We now investigate the errors made by SINBAD and
SINBAD-K1 on the validation forum issues in Section 5.1.
False negatives (missed breakage issues). We investigate
the 15 breakage issues that SINBAD did not detect. We
acknowledge that 15 false negatives is a small number and
can affect the significance of our statistical claims, but these
negatives are a 6% of the 218 issues we use for validation.

We plot in Figure 7 the distribution of false negatives
across breakage types (static/dynamic) and across the type
of broken elements we manually labeled. Only 9% of static
breakage (10 issues) and 13% of dynamic breakage (5 issues)
went undetected. These errors are due to two reasons. First,
SINBAD could not perfectly reconstruct the filter list in
five of these issues. For example, in issues involving the
use of unknown user-defined rules, or involving filter lists
that we could not track back in time. Second, seven of the
issues are not reproducible (despite reproducibility checks
in Section 3.3.2) and thus could not be identified. This was
due to page updates, geographic locks, pages disappearing,
or domain hopping. We discuss in Appendix A.4 how this
practice brings many complications for breakage detection.

We find that the three remaining false negatives are
edge cases. The first issue was due to an anomaly in the
maintainer’s workflow in which a commit was reverted and
thus the last commit in the forum did not correspond to the
fixing commit. Thus, SINBAD was testing breakage with
the wrong filter list. In the second issue, a website still was
capable of using anti-adblock despite fixes in the filter list
causing anomalous behavior. As we could classify correctly
eight issues with anti-adblock (Figure 7), we assumed this
is an outlier and did not delve deeper into the problem. The
third issue is caused by the presence of overlays – full-
page backgrounds that are usually gray or transparent. Users
experience breakage if they cannot close an overlay and
access the main page content. An overlay can be wrongly

0 10 20 30 40 50
Percentage of wrong predictions per issue

100

101

Fr
eq

ue
nc

y

False Negatives
False Positives

Figure 8. Distribution of the percentage of wrongly predicted sub-trees by
SINBAD from all sub-trees in issues for both false positives and false
negative issues by SINBAD-K1

included by SINBAD as essential content in edge cases,
rather than designating it as the cookie banner and closing
it, due to language-related limitations (e.g.,, buttons in non-
English language, more details in Appendix A.5).
False positives (issues misclassified as broken). SIN-
BAD-K1’s false positives are harder to group into specific
categories. This method has a strictness imbalance between
classifying something as breakage and not: misclassifying
a page as broken requires classifying just one subtree as
broken, while misclassifying it as not broken requires (po-
tentially) many non-broken predictions. Thus, it takes more
than 10% prediction errors by SINBAD to misclassify a
page as legitimate, and only 4% of errors or less to cause a
false breakage alert (see Figure 8). More complex heuristics
could lead to more balanced errors.

In our experiments, most errors come from earlier parts
of the pipeline, including filter-list reconstruction and crawl-
ing, rather than classification. Five issues involved requests
to remove empty ad containers left behind from correctly
blocked banner ads. Such issues illustrate a vague boundary
between breakage issues and ad-blocking requests. Some
users may consider this as breakage, whereas others may
simply view it as a partially blocked ad. We also find errors
on two sites due to the presence of a large amount of
randomly changing content across visits, e.g., image gallery
with shuffled images. This can result in the creation of many
subtrees (even more than 40) which increases the chances
that SINBAD mislabels as broken.
Subtree misclassifications. We examine the distribution
of features in the misclassified subtrees where errors did
not originate from crawling or issues in filter-list recovery
from forum posts. We observe that these subtrees have few
nodes (see Figure 9), and thus provide little information,
hindering classification. In fact, these small subtrees are
usually wrongly labelled by our crawler as <svg/>, creating
noisy ground truth that induces errors. This is a limitation
of our node-similarity heuristic, which we discuss further in
Appendix B.3.

5.4. Comparison with existing detectors

In this section, we compare SINBAD against existing
methods to detect breakage. Previous studies quantify break-
age automatically via two approaches: (1) using heuristics
based on the changes in the page resources loaded (number

0 10 20 30 40 50 60 70 80
Number of nodes in subtree

100

101

102

103

Fr
eq

ue
nc

y
of

 s
ub

tr
ee

s true broken sub-trees
false legitimate sub-trees
true legitimate sub-trees
false broken sub-trees

Figure 9. Distribution of the number of nodes per subtree across four groups
of SINBAD predictions: true broken subtrees, false legitimate subtrees, true
legitimate subtrees, and false broken subtrees.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

COUNT-IMG-VIS1

COUNT-ALL

COUNT-REQ1

RATIO-IMG-VIS1

RATIO-ALL1

RATIO-REQ1
PAGEGRAPHSINBAD-K1

Figure 10. True positive rate and false positive rate of the main heuris-
tics evaluated on the ADGUARD validation dataset. (Blue=SINBAD;
Green=PAGEGRAPH (Smith et al. [11]); Red=Heuristic-based approaches)

of images, change in the website text etc.) [29, 32, 33],
network traffic differences [34], or visibility changes in
webpages [35]; and (2) machine-learning-based approach
using a graph-based representation of webpages [11]. Unlike
SINBAD, none of these approaches can detect cases of
dynamic breakage. We compare SINBAD against these
approaches on the ADGUARD validation set. As previous
methods operate on at page level, we use SINBAD’s best
site-based heuristic, SINBAD-K1.
Heuristics-based approaches. Inspired by previous works,
we use two similar classes of heuristics: count-based thresh-
old heuristics [33, 34]:

COUNT-<elements>𝑘 :{
breaking if any Avge∈elements (Δ #e) > 𝑘

non-breaking otherwise

and ratio-based threshold heuristics [29]:

RATIO-<elements>𝑟 :{
breaking if any Avge∈elements (Δ#e

#all e) >
𝑟

100
non-breaking otherwise

The heuristics we evaluate are COUNT-REQ1 and
RATIO-REQ1 (network requests), COUNT-IMG-VIS1 and
RATIO-IMG-VIS1 (visible images), COUNT-ALL and
RATIO-ALL1 (images, buttons, and text). As shown in Fig-
ure 10, our model outperforms these heuristics by orders of
magnitude. We experimented with other heuristic threshold
values, but they performed worse than those in the figure.

No heuristic achieves a result above 55% accuracy and
AUC score, as opposed to SINBAD’s 86% accuracy and

85% AUC score. All of them fail to detect legitimate changes
on the website, with precision and recall as low as 10% and
20%. This is because these classifiers make no difference
between blocking an annoying element and an important
(salient) element on a page.
Machine-learning-based approach. We compare SINBAD
against Smith et al. [11], the only machine-learning approach
for breakage detection to the best of our knowledge, who
report an AUC of 88%.

We find that Smith et al.’s methodology leads to a noisy
ground truth for two main reasons, and thus their AUC may
not be representative of actual breakage detection. First,
they include issues as old as 2013, but given that their
experiments were run in 2022, many of these issues may
not have been reproducible at the time of the crawl (our
manual reproducibility investigation of EASYLIST shows
that reproducibility drops quickly with time, down to 27%
after 2 years, see Section 3.3.2). We also find that Smith et
al..’s heuristic intended to avoid this pitfall – using variation
in the network traffic across two crawls (before and after
a filter list change) – is unreliable. On 170 EASYLIST
issues, of which 44% are reproducible and 56% are not,
55 out of 66 non-reproducible posts are falsely labeled as
reproducible by Smith et al.’s heuristic. This casts doubt on
the representativeness of the ground truth used in [11].

The second issue comes from the data curation approach.
Smith et al.. directly scrape commits from the filter-list
repository, and treat each commit that mentions the issue
as a fixing commit. Yet, 18% of the issues need two or
more commits from a maintainer moderator before the issue
is resolved (see Section 3.2). This means that many of the
examples used by Smith et al.. may not have been actually
fixed. To address this issue, Smith et al.. filter commits that
mention “fix” in the title and expect the broken page URL to
be mentioned in the commit title. But, we find that 20% of
1344 EASYLIST issues state the base domain of a broken
page rather than the full URL in the commit title, which
would have led to errors in the ground truth in [11] possibly
overestimating the number of broken samples.

We attempted to test Smith et al.’s pipeline on our vali-
dation dataset so as to have a head-to-head comparison with
SINBAD. Unfortunately, we were unable to run the crawl-
ing and graph creation code due to missing and deprecated
dependencies, even after several rounds of communication
with the authors. Thus, we choose to re-implement the fea-
tures used in their classifier. We succeeded at implementing
32 out of their top 40 features and failed to implement those
that are related to their custom webpage representation [65],
which we would have to reproduce as well. We train Smith
et al.’s model on the same dataset that we train SINBAD
model on to minimize the dataset effect on the trained
models. We call this model PAGEGRAPH.

On the ADGUARD validation dataset used throughout
Section 5, PAGEGRAPH only achieves 65% accuracy and a
57% AUC score, compared to SINBAD’s 86% accuracy and
85% AUC score. While some PAGEGRAPH’s performance
loss with respect to the AUC reported in the paper can be
attributed to the features we could not implement, given

Table 4. PAGE-LEVEL COMPARISON BETWEEN SINBAD AND OUR
RE-IMPLEMENTATION OF PAGEGRAPH BY SMITH et al. [11]

Dataset Model AUC TPR FPR

ADGUARD SINBAD 0.85 0.89 0.20
PAGEGRAPH 0.57 0.88 0.61

ADGUARD-24 SINBAD 0.87 0.94 0.20
PAGEGRAPH 0.55 0.86 0.76

EASYLIST SINBAD 0.78 0.82 0.25
PAGEGRAPH 0.48 0.89 0.94

UBLOCK SINBAD 0.88 1.00 0.24
PAGEGRAPH 0.39 0.75 0.90

that these features had little importance, we believe this
difference is not relevant.

To ensure that the advantage of SINBAD is not tai-
lored to our validation dataset, we repeat the comparison
using three other datasets: ADGUARD-24 (100 newer Ad-
guard issues starting on the 28th Nov. 2023, 50 breakages),
EASYLIST (120 issues, 57 breakages), and UBLOCK (31
issues, 12 breakages). For the latter two, due to the lack
of non-broken examples, we considered non-reproducible
issues as non-broken which we manually checked is a
good approximation. We report the results of the compar-
ison in Table 4, where wer see that SINBAD outperforms
PAGEGRAPH for all three datasets. We conclude that SIN-
BAD’s advantage over PAGEGRAPH is dataset-independent.

5.5. SINBAD in an open-world setting

We evaluate SINBAD in an open-world setting to assess
its ability to reliably find breakage in the wild. We study
the potential effects of two kinds of rules: site-specific rules
written by mantainers to avoid creating issues in other sites,
and generic rules aimed to affect all sites (e.g., blocking
generic tracking APIs).

We collect 106 websites (50% top and 50% random sites
from Alexa’s top-1M) over 3 generic and 3 site-specific
filter-list changes from the Adguard’s forum. Among the
106 sites, We found one unreported breakage for one of
the generic settings, 5 to 8 false positives in the site-
specific settings, and 7 false positives with a generic filter-list
change. We manually inspect these false postives and find
that same very popular sites (e.g., ebay.com, amazon.com,
and imdb.com) are triggering false alarms due to two issues:

First, an implementation issue results in some requests
in some visits being recorded twice. When this double
counting only happens in one visit, SINBAD interprets that
the element has been REMOVED or ADDED, even though
the element has not changed in reality. A similar problem
happens when webs use SVGs, as they load differently
between visits and are labeled EDITED even if they are
the same. Removing these falsely created sub-trees reduces
the average false positives to 3 (FPR of 2.9%).

Second, some pages return random content on each
reload (e.g., youtube.com recommended videos) which ap-
pear as REMOVED and ADDED between two visits and

causes SINBAD to predict a breakage. This limitation is
not SINBAD-specific, but an inherent challenge to the dif-
ferential approach that affects all existing works, including
Smith et al. [11]. It could be solved by reloading the page
several times to detect and ignore ever-changing content. If
this issue would be resolved by the community, SINBAD’s
false positive rate would be 0.63%.

In summary, SINBAD’s open world FPR is much lower
than in the controlled experiments, mainly because it is
unlikely that a filter-list change impacts random webs and
erroneously produces sub-trees. We conclude that SINBAD
is a promising approach for maintainers to automate the
discovery of breakage and avoid deploying harmful changes.

5.6. Efficiency

We measure the overhead of SINBAD’s large-scale
crawls and graph creation processes to understand if is is
suitable for deployment during filter-list rule creation.

The dominating overhead in SINBAD is crawl time. For
our dataset, SINBAD took an average of 53 ± 35 seconds
for the first crawl (with the fixing filter-list and saliency
predictions), 48 ± 20 seconds for the second crawl (with
the breaking filter list) list, and 43±18 seconds for the third
crawl (with no filter list), per page. The entire crawl, without
parallelization, took 23 hours for our dataset of 543 sites,
with a large variance from site to site, due to the difference
in the number of DOM nodes across sites and in the time to
fetch them from the server. These numbers can be reduced
by decreasing the timeout threshold (we use 400 seconds),
and by parallelizing the crawl.

Per site, SINBAD takes 6.3 ± 1.8 seconds to build the
trees, 9.3±9.0 seconds to extract subtrees, 1.3±3.1 seconds
to obtain features,and 3.7 ± 0.9 milliseconds to test against
the classifier. Thus, it would take about 1 day to test a
filter list on the top-10k sites, running on 20 instances. This
performance is sufficient to keep up with the current update
frequency of popular lists. These numbers could be improved
by carefully optimizing the code.

6. Take aways

In this work, we have introduced a new automated tool
for detecting breakage, SINBAD. Trained on verified user-
reported breakage instances that we extract from blocking
tools forums, SINBAD improves significantly over the state
of the art, both in terms of accuracy – with a 20% increase,
and coverage – detecting dynamic and visual figures that
were missed by previous work.
Usage scope. SINBAD can be used by filter-list maintainers
to check the breakage potential of new rules before deploy-
ment. SINBAD’s detection granularity makes it easy for
maintainers to identify problematic rules and adjust them.
SINBAD can also be used to augment automated advertise-
ment and tracking detection tools [20, 21, 22, 23, 25, 24]
with tests to understand whether removing the identified
resource would result in breakage; or automatic filter-list
rule creation [33] with tests to detect problematic rules.

SINBAD is not restricted to breakage caused by ad-
blocking filter lists. It can be adapted to any other breakage
source, provided that there are good data sources to train the
classifier. The source code and instructions for SINBAD can
be found at https://github.com/spring-epfl/sinbad.

Modularity SINBAD follows a modular design. Every
component can be substituted if a better alternative becomes
available. For instance, a future saliency model with better
performance, or a better segmentation algorithm. SINBAD
also has an interface to create custom interactions with
minimum restrictions, to augment the crawler with new
instructions such as filling login forms [66, 67].

Future Improvements. Breakage forums’ data are very re-
liable, but it is hard to obtain a large number of samples, and
there is no guarantee that the ones obtained are representative
of all possible types of breakage that users face. Integrating
a reporting mechanism in blocking tools for users to report
breakage in a structured manner can increase the amount of
data available and capture more forms of breakage [9].

Data availability is also affected by reproducibility – due
to natural page dynamism or due to the issue having been
fixed before the crawl. More work is needed to find ways
to recreate breakage (e.g., using a crowd-sourcing tool or
web extension for users to report breakage and store visit
snapshots with enough details for the features).

References

[1] “Adblock Plus.” [Online]. Available: https://adblockplus.org/
[2] “uBlock Origin.” [Online]. Available: https://github.com/gor

hill/uBlock
[3] “Ghostery.” [Online]. Available: https://www.ghostery.com
[4] Brave, “A Long List of Ways Brave Goes Beyond Other

Browsers to Protect Your Privacy.” [Online]. Available:
https://brave.com/privacy-features/

[5] Microsoft Edge Team, “Introducing tracking prevention,
now available in Microsoft Edge preview builds.” [Online].
Available: https://blogs.windows.com/msedgedev/2019/06/27/
tracking-prevention-microsoft-edge-preview/

[6] “EasyList.” [Online]. Available: https://easylist.to/easylist/eas
ylist.txt

[7] “EasyPrivacy.” [Online]. Available: https://easylist.to/easylist
/easyprivacy.txt

[8] A. Mathur, J. Vitak, A. Narayanan, and M. Chetty, “Charac-
terizing the Use of Browser-Based Blocking Extensions To
Prevent Online Tracking.” in USENIX SOUPS, 2018.

[9] A. Nisenoff, A. Borem, M. Pickering, G. Nakanishi,
M. Thumpasery, and B. Ur, “Defining “Broken”: User Ex-
periences and Remediation Tactics When Ad-Blocking or
Tracking-Protection Tools Break a Website’s User Experi-
ence,” in USENIX Security, 2023.

[10] S. K. Sahib and A. Lazarev, “Bringing content blocking to the
masses: Dealing with filter list development, maintenance, and
compatibility for 50 million users,” in USENIX PEPR, 2022.

[11] M. Smith, P. Snyder, M. Haller, B. Livshits, D. Stefan, and
H. Haddadi, “Blocked or Broken? Automatically Detecting
When Privacy Interventions Break Websites,” PETS, 2022.

[12] “Disconnect tracking protection lists.” [Online]. Available:
https://disconnect.me/trackerprotection

[13] AdGuard AdBlocker Browser Extension — Overview —
AdGuard. [Online]. Available: https://adguard.com/en/adgua
rd-browser-extension/overview.html

[14] MDN, “Storage access policy: Block cookies from trackers.”
[Online]. Available: https://developer.mozilla.org/en-US/docs
/Mozilla/Firefox/Privacy/Storage access policy

[15] U. Iqbal, Z. Shafiq, and Z. Qian, “The Ad Wars: Retrospective
Measurement and Analysis of Anti-Adblock Filter Lists,” in
IMC, 2017.

[16] P. Snyder, A. Vastel, and B. Livshits, “Who Filters the Fil-
ters: Understanding the Growth, Usefulness and Efficiency of
Crowdsourced Ad Blocking,” in ACM SIGMETRICS, 2020.

[17] W. Wang, Y. Zheng, X. Xing, Y. Kwon, X. Zhang, and
P. Eugster, “Webranz: web page randomization for better ad-
vertisement delivery and web-bot prevention,” in FSE, 2016.

[18] M. Alrizah, S. Zhu, X. Xing, and G. Wang, “Errors, Mis-
understandings, and Attacks: Analyzing the Crowdsourcing
Process of Ad-blocking Systems,” in IMC, 2019.

[19] H. Le, A. Markopoulou, and Z. Shafiq, “CV-INSPECTOR:
Towards Automating Detection of Adblock Circumvention,”
in NDSS, 2021.

[20] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and
Z. Shafiq, “AdGraph: A Graph-Based Approach to Ad and
Tracker Blocking,” in IEEE SP, 2020.

[21] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprinting
Behaviors,” in IEEE SP, 2021.

[22] U. Iqbal, C. Wolfe, C. Nguyen, S. Englehardt, and Z. Shafiq,
“Khaleesi: Breaker of Advertising and Tracking Request
Chains,” in USENIX Security, 2022.

[23] S. Siby, U. Iqbal, S. Englehardt, Z. Shafiq, and C. Troncoso,
“WebGraph: Capturing Advertising and Tracking Information
Flows for Robust Blocking,” in USENIX Security, 2022.

[24] Z. Yang, W. Pei, M. Chen, and C. Yue, “WTAGRAPH:
Web tracking and advertising detection using graph neural
networks,” in IEEE SP, 2022.

[25] S. Munir, S. Siby, U. Iqbal, S. Englehardt, Z. Shafiq, and
C. Troncoso, “COOKIEGRAPH: Understanding and Detect-
ing First-Party Tracking Cookies,” in ACM SIGSAC, 2023.

[26] “Adblock Plus - Open Adblock Plus forums. .”
[Online]. Available: https://forum.adblockplus.org/viewforu
m.php?f=6&sid=d29a444a2bf4426a1e1cabe285398520

[27] “uBlock Origin uAssets GitHub issues.” [Online]. Available:
https://github.com/uBlockOrigin/uAssets

[28] “Adguard AdguardFilter Github Issues.” [Online]. Available:
https://github.com/AdguardTeam/AdguardFilters/issues

[29] B. Krishnamurthy, D. Malandrino, and C. E. Wills, “Measur-
ing privacy loss and the impact of privacy protection in web
browsing,” in USENIX SOUPS, 2007.

[30] Z. Yu, S. Macbeth, K. Modi, and J. M. Pujol, “Tracking the
trackers,” in ACM WWW, 2016.

[31] J. Jueckstock, P. Snyder, S. Sarker, A. Kapravelos, and
B. Livshits, “Measuring the privacy vs. compatibility trade-
off in preventing third-party stateful tracking,” in ACM WWW,
2022.

[32] R. Fouquet, P. Laperdrix, and R. Rouvoy, “Breaking Bad:
Quantifying the Addiction of Web Elements to JavaScript,”
ACM TOIT, 2023.

[33] H. Le, S. Elmalaki, A. Markopoulou, and Z. Shafiq, “AutoFR:
Automated filter rule generation for adblocking,” USENIX
Security, 2022.

[34] A. H. Amjad, Z. Shafiq, and M. A. Gulzar, “Blocking
JavaScript without Breaking the Web: An Empirical Inves-
tigation,” PETS, 2023.

https://github.com/spring-epfl/sinbad
https://adblockplus.org/
https://github.com/gorhill/uBlock
https://github.com/gorhill/uBlock
https://www.ghostery.com
https://brave.com/privacy-features/
https://blogs.windows.com/msedgedev/2019/06/27/tracking-prevention-microsoft-edge-preview/
https://blogs.windows.com/msedgedev/2019/06/27/tracking-prevention-microsoft-edge-preview/
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://easylist.to/easylist/easyprivacy.txt
https://disconnect.me/trackerprotection
https://adguard.com/en/adguard-browser-extension/overview.html
https://adguard.com/en/adguard-browser-extension/overview.html
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://forum.adblockplus.org/viewforum.php?f=6&sid=d29a444a2bf4426a1e1cabe285398520
https://forum.adblockplus.org/viewforum.php?f=6&sid=d29a444a2bf4426a1e1cabe285398520
https://github.com/uBlockOrigin/uAssets
https://github.com/AdguardTeam/AdguardFilters/issues

[35] I. Castell-Uroz, K. Fukuda, and P. Barlet-Ros, “ASTrack:
Automatic Detection and Removal of Web Tracking Code
with Minimal Functionality Loss,” in IEEE INFOCOM, 2023.

[36] M. Smith, P. Snyder, B. Livshits, and D. Stefan, “Sugar-
coat: Programmatically generating privacy-preserving, web-
compatible resource replacements for content blocking,” in
ACM SIGSAC, 2021.

[37] “EasyList Report inocrrectly removed content forum.”
[Online]. Available: https://forums.lanik.us/viewforum.php?
f=64-report-incorrectly-removed-content

[38] “Search results for ‘broken’ - Brave Community.” [Online].
Available: https://community.brave.com/search?q=broken

[39] “SitePoint Forums.” [Online]. Available: https://www.sitepo
int.com/community/

[40] “Issues — webcompat.com.” [Online]. Avail-
able: https://webcompat.com/issues?page=1&per page=50&
state=open&stage=all&sort=created&direction=desc

[41] “Beautiful Soup Documentation.” [Online]. Available: https:
//beautiful-soup-4.readthedocs.io/en/latest/

[42] I. Ullah, M. Jian, S. Hussain, J. Guo, H. Yu, X. Wang, and
Y. Yin, “A brief survey of visual saliency detection,” 2020.

[43] C. Shen and Q. Zhao, “Webpage Saliency,” in ECCV, 2014.
[44] S. Chakraborty, Z. Wei, C. Kelton, S. Ahn, A. Balasubra-

manian, G. J. Zelinsky, and D. Samaras, “Predicting Visual
Attention in Graphic Design Documents,” IEEE Trans. Mul-
timed., 2022.

[45] R. Grier, P. Kortum, and J. Miller, “How Users View Web
Pages: An Exploration of Cognitive and Perceptual Mech-
anisms,” in Human Computer Interaction Research in Web
Design and Evaluation, 2007.

[46] S. Vidyapu, V. S. Vedula, and S. Bhattacharya, “Investigating
and Modeling the Web Elements’ Visual Feature Influence on
Free-viewing Attention,” ACM TWEB, 2020.

[47] N. Utiu and V.-S. Ionescu, “Learning Web Content Extraction
with DOM Features,” in IEEE ICCP, 2018.

[48] Z. Wang, Y. Guo, Y. Xu, Y. Xue, Y. Liu, H. Shen, and
X. Cheng, “SCIEnt: A Semantic-Feature-Based Framework
for Core Information Extraction from Web Pages,” in ICONIP,
2022.

[49] X. Pang, Y. Cao, R. W. H. Lau, and A. B. Chan, “Directing
user attention via visual flow on web designs,” ACM TOG,
2016.

[50] Q. Zheng, J. Jiao, Y. Cao, and R. W. H. Lau, “Task-driven
Webpage Saliency,” in ECCV, 2018.

[51] W. Shan, G. Sun, and Z. Liu, “Webpage Image Saliency
Prediction via Adaptive SVM,” in IFTC, 2016.

[52] R. Burget and I. Rudolfova, “Web Page Element Classification
Based on Visual Features,” in ACIIDS, 2009.

[53] J. Li, Y. Lu, and X. Zhang, “Extracting News Information
Based on Webpage Segmentation and Parsing DOM Tree
Reversely,” in ISCTCS, 2014.

[54] J. Kiesel, L. Meyer, F. Kneist, B. Stein, and M. Potthast,
“An Empirical Comparison of Web Page Segmentation Algo-
rithms,” in ECIR, 2021.

[55] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun,
W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng,
Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi,
W. Ouyang, C. C. Loy, and D. Lin, “MMDetection: Open
MMLab Detection Toolbox and Benchmark,” arXiv, 2019.

[56] B. Meier, T. Stadelmann, J. Stampfli, M. Arnold, and
M. Cieliebak, “Fully Convolutional Neural Networks for
Newspaper Article Segmentation,” in ICDAR, 2017.

[57] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, “VIPS: A Vision-
based Page Segmentation Algorithm,” Microsoft, Tech. Rep.

MSR-TR-2003-79, 2003.
[58] wushuartgaro, “VipsPython.” [Online]. Available: https:

//github.com/wushuartgaro/VipsPython
[59] J. Kiesel, F. Kneist, L. Meyer, K. Komlossy, B. Stein, and

M. Potthast, “Web Page Segmentation Revisited: Evaluation
Framework and Dataset,” in ACM CIKM, 2020.

[60] S. Castro, “Fast Krippendorff: Fast computation of Krippen-
dorff’s alpha agreement measure,” https://github.com/pln-fin
g-udelar/fast-krippendorff, 2017.

[61] J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasser-
man, “Distribution-Free Predictive Inference for Regression,”
JASA, 2018.

[62] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling
Technique,” JAIR, 2002.

[63] S. Englehardt and A. Narayanan, “Online tracking: A 1-
million-site measurement and analysis,” in ACM CCS, 2016.

[64] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boost-
ing System,” in ACM SIGKDD, 2016.

[65] PageGraph. [Online]. Available: https://github.com/brave/bra
ve-browser/wiki/PageGraph

[66] A. Senol, G. Acar, M. Humbert, and F. Z. Borgesius, “Leaky
Forms: A Study of Email and Password Exfiltration Before
Form Submission,” in USENIX Security, 2022.

[67] S. A. Roomi and F. Li, “A Large-Scale Measurement of
Website Login Policies,” in USENIX Security, 2023.

[68] M. E. Akpınar and Y. Yesilada, “Vision Based Page Segmen-
tation Algorithm: Extended and Perceived Success,” in ICWE,
2013.

Appendix A.
Examples

A.1. Interdependencies in filter lists

We provide a breakage example that is not triggered by
the reported breaking rule but requires the whole filter list to
be reproduced. We take the ADGUARD issue #162559, where
the user loads 11 collections of filter lists. The reported
breakage is a dark overlay over a phone screen depiction
on the website. The fixing commit adds the following rule

Listing 1. ADGUARD FIXING COMMIT CHANGE

1 + app.programme.conventus.de##ion-app > #ion-
overlay-1

This rule blocks any HTML element whose parent has
the id “ion-id” and has the id “ion-overlay-1”.
We experiment with three different filter-list setups us-
ing AdGuard on Firefox. For filter list A, we reverse
the rule to get the opposite effect as Smith et al. sug-
gest [11]. For filter list B, we only take the edited filter
list Adguard’s cookies_specific.txt. For filter list
C, we include all the filter rules in the configuration at
the time of the issue. Only the third setup succeeds in
reproducing the issue. The other setups show a cookie no-
tice where the breakage should have occurred. The reason
is that a global filter list installed by the user, left un-
changed by the maintainer, already blocked the cookie con-
sent form without blocking the overlay ion-overlay-1.
The fix involved hiding the additional overlay which is

https://forums.lanik.us/viewforum.php?f=64-report-incorrectly-removed-content
https://forums.lanik.us/viewforum.php?f=64-report-incorrectly-removed-content
https://community.brave.com/search?q=broken
https://www.sitepoint.com/community/
https://www.sitepoint.com/community/
https://webcompat.com/issues?page=1&per_page=50&state=open&stage=all&sort=created&direction=desc
https://webcompat.com/issues?page=1&per_page=50&state=open&stage=all&sort=created&direction=desc
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://github.com/wushuartgaro/VipsPython
https://github.com/wushuartgaro/VipsPython
https://github.com/pln-fing-udelar/fast-krippendorff
https://github.com/pln-fing-udelar/fast-krippendorff
https://github.com/brave/brave-browser/wiki/PageGraph
https://github.com/brave/brave-browser/wiki/PageGraph

Figure 11. Overlay breakage example. Left: site without any filter rule. Middle: site with broken filter rules. Right: site with the fixing filter rules.

written into cookies_specific.txt, and if we only
use cookies_specific.txt on the website (setup
B), only the overlay will be blocked and not the cookie
consent form. Both the global filter list and the fixed
cookies_specific.txt must be present (setup C) to
have both elements blocked.

A.2. Dynamic breakage caught due to saliency and
interactions

In ADGUARD issue 139618, SINBAD correctly pre-
dicts 39 subtrees our of 46 – 16 Broken, 7 Legitimate,
and 16 Neutral. Among the broken subtrees, we get
iframes, scripts, and most importantly, an edited div which is
the parent of a video container that does not load correctly.
The forum indicates that the video does not load because
it depends on a script that runs as a response to accepting
cookies. As the filter rules hide the cookie banner, this script
is never triggered, resulting in no video. SINBAD finds this
video as a salient element and attempts to click on it. In the
fixed version, the video loads correctly. SINBAD captures
this difference in behavior (change in elements touched due
to an interaction dn_el_in_int_tree, change in the
number of visible elements n_visible_rem), and marks
this subtree as breaking. The falsely labeled elements are
small <svg/> due to reasons described in Appendix B.3.

A.3. Content-rule Breakage undetected by
network-based features

In ADGUARD issue 157392, SINBAD correctly
predicts all 11 subtrees extracted – 3 Broken, 3
Legitimate, and 2 Neutral. The broken subtrees are an
edited search bar, a header, and the main content div. The
forum indicates that the breakage happens due to an anti-ad-
block employed by the website to block page access when
it detects an ad-blocker. It does so by changing the main
content to a message requesting the user to remove their ad-
blocker. As the network activity remains unchanged, there
are no differences on features reflecting network requestsfor
the broken sub-tree. Thus, a model trained only on network-
based features would fails to detect this content breakage.
SINBAD finds that the main content sub-tree has been
shifted from its original position, has a large overall size,
originally had one visible node, one Layout nodes edited,
it covers 2 salient elements (originally a video and some

text), and the text content was changed. Using this, SINBAD
predicts that the subtree’s edits cause breakage.

A.4. Domain hopping and filter-list deprecation

We say a webpage does domain hopping if it redirects
the user to different root domains across time (days or
months). Websites employ domain hopping to evade any
domain-based blocking or banning. For example, Adguard’s
issue 141090 presents a broken webpage formerly under
the domain gogohd.net. During our investigation, the
page automatically redirects to a new domain periodically
(e.g., anihdplay.com) and renders any domain-specific
filter rule useless. Reproducing this breakage would require
constantly updating filter rules, which is unmaintainable.

A.5. Overlay breakage and cookie-banner evasion
limitations

Overlays are the background elements for full-page
forms (e.g., cookie consent, privacy policy, pay-wall etc.).
They prevent the user from accessing the page before ac-
cepting the conditions in the form. Figure 11 (left) shows the
grey overlay for the cookie form. Overlay breakage happens
when the form is hidden and the user cannot accept to access
the page. In some web-pages, the overlay can be transparent;
the site appears normal but prevents interactions. Overlay
breakage does not necessarily have to be static breakage.

During a crawl, before we take a site snapshot, we search
for any cookie banner and try to accept the cookies. Since the
cookie-banner evasion module implements a keyword-based
approach to find the cookie banner and accept it, it fails
to account for some languages and phrasings of the cookie
banner (Figure 12 (left)). When this happens, the overlay is
present in the visit with no filter lists 𝐶𝑁 and the visit with
breaking rules 𝐶𝐵. According to the labeling rule in Figure
5, it is labeled as neutral not broken.

Appendix B.
Implementation Details

B.1. Extracting URLs from forum posts.

EasyList forum issue titles often contain the broken
webpage’s domain. We extract the post body text using

Cookies - INFO - Unable to evade
cookies banner or it doesn't
exist...

Cookies - INFO - Unable to evade
cookies banner or it doesn't
exist...

Cookies - INFO - Unable to evade
cookies banner or it doesn't
exist...

NO FILTER LISTS FIXING FILTER LIST BREAKING FILTER LIST

Figure 12. Example of an “overlay” breakage undetected by SINBAD-K1. The Cookie-banner crawling module failed to detect the cookie banner.

Figure 13. (top) Example of the output of VIPS Segmentation on a webpage.
Each red rectangle represents one semantic group. (bottom) Example of
the saliency prediction for the best model on the same website. The red
rectangle represents the only salient group.

BeautifulSoup4 4.11.1 and extract all the URLs within using
standard URL regex. Then, we keep the URLs that have the
same domain as the title. When we obtain have many URLs
or none at all, we flag the issue for manual investigation
and extract the test URL manually. For uBlock’s forum,
the breakage URL is often located after the text “URL
address of the web page” or “### URL(s) where the issue
occurs”, or before “### Category”. We compare the extracted
URLs with the domain usually found in the issue’s title. For
Adguard’s forum, the breakage URL is well-structured – it
is present after the statements “### Issue URL”, “** Issue
URL”, or “Where is the problem encountered?”. We drop all
issues that do not follow this format.

B.2. VIPS Python Implementation

VIPS segments a page from a top-down iterative ap-
proach. In each iteration, it tries to find the optimal place
to add a horizontal or vertical separator if any are possi-
ble. This divides larger segments into smaller ones. In this
case, the round number is a hyperparameter that controls
the granularity of this segmentation, since further rounds
mean finer subdivisions of larger segments. VIPS relies
on DOM and CSS heuristics to estimate the best location
of a separator. For example, the boundaries of text with
a similar font, the borders of tables, or a section with a
different background color etc.. As Akpinar et al. [68] points
out, the original VIPS limitations arise due to changes by

moving from HTML3 to HTML5. This change introduces
tags and web-design practices previously unaccounted for
by VIPS. For instance, webpages used to rely on

to divide content but today it is rarely the case. Rather, we
use <div>...</div> to structure the website. So, we
updated a VIPS Python implementation [58] to account
for these tags as candidates for separators. We also fine-
tune internal hyperparameters by manually inspecting the
results. First, we replace elements that represented dividers
like <hr/> with <div> elements. Second, we add rules
for many new elements that often represent media content,
e.g., <object>, <embed>, and <iframe>. Finally, VIPS
focused on text-centric rules that are less relevant in current
media-rich (image and graphics) websites, we change this
focus by giving more weight to images and videos.

B.3. Tree Comparison Algorithm

To compare two DOM trees 𝑇𝐴 and 𝑇𝐵, we start by
comparing the children of the two roots, identifying children
that are common and the same, common children that have
attributes changed from 𝐴 to 𝐵, children that are unique to
𝑇𝐴, and those unique to 𝑇𝐵. If a node 𝑥 is unique to either
tree, the sub-tree rooted at 𝑥 becomes a differential sub-tree
(added or removed). If it is a common node with attributes
changed we mark it as a root for an edited differential sub-
tree. Finally, if the nodes are the same, they are part of the
common tree 𝑇𝐴,𝐵. We then repeat the algorithm above for
the trees rooted at edited or similar nodes in both trees.
Node similarity heuristic. To compare children of 𝑇𝐴’s root
and 𝑇𝐵’s root, we cannot simply use the DOM id, because it
is generated at runtime and the browser might load elements
in a different order in 𝐴 or 𝐵. We need to rely on attributes
and visual cues for the nodes to determine whether they
are the same. So, we implement a heuristic that computes
a similarity score between nodes 𝑎 ∈ 𝑇𝐴 and 𝑏 ∈ 𝑇𝐵:
sim(𝑎, 𝑏) ∈ [0, 1]. We then find the closest match to 𝑎 in
𝑇𝐵.

match𝑇𝐵 (𝑎) := arg max
𝑏∈𝑇𝐵

sim(𝑎, 𝑏)

Then, if the maximum score is between 0 and 0.75,
we consider that 𝑎 was removed. If the maximum score

is between 0.75 and 1, we consider that 𝑎 was edited to
match𝑇𝐵 (𝑎). Finally, if the maximum score is exactly 1, we
add 𝑎 = match𝑇𝐵 (𝑎) as part of the common tree. These
thresholds are manually fine-tuned and we don’t claim they
are ideal. The heuristic itself is composed of two parts, dis-
qualification conditions that return a zero score immediately,
and a numerical average score over attributes and visual cues
of the pair of nodes. First, we list disqualification conditions:
the nodes have different HTML id, src, or name values.
For the numerical score, we check the similarity of text
content, classes in common for the class attribute, and
the distance on the screen between the two nodes.

This heuristic has limitations that we found empirically.
Mainly, a large number of <svg/> pairs that should be
considered edited have a max score less than 0.75, i.e. one
is considered added while the other removed. The main
reason behind this is that if an <svg/> does not load, the
position is (0,0). So, the distance between the two nodes is
large enough to reduce the score below 0.75.

Table 5. FEATURE IMPORTANCE FOR SALIENCY CLASSIFIER ACCORDING
TO AUC LOSS PREDICTIVE POWER.

Rank Category Feature AUC Loss

1 Content % of layout nodes in this group 0.025
2 Content Total # of HTML class attributes 0.025
3 Content % of layout nodes from global layout nodes 0.022
4 Positional Mean X coordinate across all groups 0.022
5 Visual Width of this group 0.022
6 Content Whether this group has the id attribute 0.017
7 Content % of text nodes in this group 0.014
8 Content Total # of functional nodes globally 0.014
9 Content % of HTML class attributes 0.013

10 Content Total # of layout nodes in this group 0.013
11 Positional X coordinate of the center of this group 0.013
12 Positional Y coordinate of the center of this group 0.012
13 Content Total # of layout layout nodes in all groups 0.011
14 Content Text content total entropy in this group 0.010
15 Content Classes values total entropy in this group 0.010
16 Content Total # of text nodes in all group 0.007
17 Structural Total # of nodes in all groups 0.006
18 Content Total text length in this group 0.005
19 Visual Mean color vibrancy of elements in the group 0.005
20 Structural Total # of nodes in this group 0.004
21 Content % of functional nodes from global layout nodes 0.003
22 Content Total # of layout nodes in this group 0.003
23 Content Total # of text nodes in this group 0.002
24 Visual Height of this group 0.002
25 Content % of functional nodes in this group 0.001
26 Visual Size of the group (height × width) 0.000
27 Visual Centrality of the group = 𝑒−10((�̄�−0.5)2+(�̄�−0.5)2) 0.000
28 Visual Mean font size in the group 0.000
29 Positional Mean Y coordinate across all groups 0.000
30 Content % of text nodes from global layout nodes 0.000
31 Visual Mean font-weight in the group 0.000

Table 6. FEATURE ABLATION RESULTS: TOP FEATURES ACCORDING TO
AUC LOSS PREDICTIVE POWER.

SCOPE: S=SUBTREE, G=GLOBAL. CATEGORY: V=VISUAL,
S=STRUCTURAL, F=FUNCTIONAL, C=CONTENT. CRAWL: 𝐹−=CRAWL

BEFORE FILTER LIST CHANGE, 𝐹+=CRAWL AFTER FILTER-LIST
CHANGE.

AUC Loss Scope Cat. Description

0.0110 S V Size of the subtree on screen at 𝐹−

0.0093 S V Number of salient elements in subtree at 𝐹−

0.0082 S S Average degree of subtree nodes
0.0082 G F Total number of requests added from 𝐹− to

𝐹+

0.0061 S F Δ in the total number of elements queried
by a script related to the sub-tree.

0.0060 S F Δ in the total number of elements queried
after interactions with the sub-tree.

0.0056 G F Total of requests removed from 𝐹− to 𝐹+

0.0049 S C Number of tags considered Text added in the
subtree from 𝐹− to 𝐹+

0.0047 S F Total number of interactions with the sub-
tree

0.0043 S C Number of tags considered Text removed in
the subtree after the filter rule edit

0.0040 G F Total number of errors thrown by scripts
removed from 𝐹− to 𝐹+

0.0037 S C Number of tags considered Other edited in
the subtree from 𝐹− to 𝐹+

0.0035 S C Number of tags considered Layout added in
the subtree from 𝐹− to 𝐹+

0.0033 S F Total number of requests called by scripts
related to the sub-tree.

0.0030 S C Number of <iframe> tags added in the
subtree from 𝐹− to 𝐹+

0.0028 S - Whether the subtree was removed
0.0022 S - Whether the subtree was edited
0.0021 S C Number of tags considered Input/Output re-

moved in the subtree from 𝐹− to 𝐹+

0.0020 S C Number of tags considered Text edited in the
subtree from 𝐹− to 𝐹+

0.0019 S - Whether the subtree was added
0.0018 S V Number of salient elements edited in the

subtree after the filter rule edit
0.0016 G F Total number of requests in the page
0.0013 G F Total number of scripts in the page
0.0012 S F Total number of requests called by elements

in the subtree
0.0010 S C Number of tags considered Layout edited in

the subtree from 𝐹− to 𝐹+

0.0009 S C Number of tags considered Other removed
in the subtree from 𝐹− to 𝐹+

0.0007 S C Number of tags considered Input/Output
edited in the subtree from 𝐹− to 𝐹+

0.0006 S C Number of <iframe> tags removed in the
subtree from 𝐹− to 𝐹+

0.0006 S C Total number of <iframe> tags in the sub-
tree from 𝐹− to 𝐹+

0.0005 S F Δ in the total number of errors after interac-
tions with the sub-tree.

0.0005 S V Number of salient elements removed in the
subtree from 𝐹− to 𝐹+

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

Web privacy tools and ad blockers can cause websites
to ”break,” which is when non-advertising, user-desired
functions of a website no longer work due to those tools.
This paper presents and evaluates SINBAD, a method for
automatically detecting broken webpages via a classifier that
analyzes subtrees on a webpage, finding roughly a 20%
improvement in accuracy over a partial re-implementation of
the previous state of the art. This classifier was trained on
differential web crawls in which the researchers visited pages
with and without privacy tools and ad blockers enabled, suc-
cessfully capturing aspects of the web’s nondeterminism as
well as modeling the most salient parts of pages to prioritize
automated tests that approximate a user’s interactions.

C.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field
• Establishes a New Research Direction

C.3. Reasons for Acceptance

1) The training of the SINBAD tool and evaluation
thereof follow a clear and systematic methodology.

2) The saliency-focused crawl appears to be a novel
idea and crucially is not computationally heavy.

3) The differential approach in the crawl helps distin-
guish broken pages from the nondeterminism of the
web.

4) The researchers created an interesting evaluation
dataset based on user-reported issues on forums.

5) The paper reports a low false positive rate for
SINBAD.

6) The ability to partially mitigate broken webpages
is important for the adoption of privacy-enhancing
tools for the web.

C.4. Noteworthy Concerns

1) The published code for the most related prior ap-
proach, by Smith et al., has missing and deprecated
dependencies. Thus, this paper could not compare
the SINBAD approach directly. Thus, they compare
both against a partial re-implementation and against
previously reported results from the Smith et al.

paper from an earlier time, making it hard to sepa-
rate artifacts of the different datasets and different
implementations.

2) While the paper reports SINBAD’s feature impor-
tance, without an ablation study and more precise
comparison to prior work it is not possible to
fully attribute the accuracy improvements that were
shown to specific design decisions.

3) The dataset is small (i.e., not comprehensive) and
may not be representative of all websites.

4) The evaluation set is unbalanced (overrepresenting
broken pages), leading to questions about the false
positive rate in an open world scenario. This con-
cern has been partially addressed by a new experi-
ment that measures the false positive rate on a small
sample of websites, but the small size of that sample
still leaves open questions about how these results
will generalize.

Appendix D.
Response to the Meta-Review

1) We acknowledge the limitations of running a comparison
between our re-implementation of Smith et al.’s work [11].
Yet, as SINBAD’s improvement is consistent across datasets
(Table 2), we argue that potential artifacts of the datasets
have no influence on our conclusions.
3 and 4) We agree that given the size of the dataset, it may
not be representative of all kinds of breakage on the Web. We
would like to note that this limitation is inherent to having a
quality dataset which requires manual validation. We made
this choice, given that our checks on examples collected via
heuristics [11] were inaccurate (see Section 5.4). We would
like to encourage the community to research better methods
of collecting reliable data so that this issue can be addressed
in a systematic manner.

	Introduction
	Background & Related Work
	Obtaining Breakage Examples
	Data sources
	Dataset Collection and Processing
	Dataset Analysis
	Need for automated breakage detection
	Automatability and Reproducibility
	Breakage characterization

	SINBAD: Detecting website breakage
	Saliency-informed Crawling
	Identifying Web-salient Areas
	Interacting with salient elements
	Crawl implementation

	Differential subtree creation
	Subtree classification

	Evaluation
	Classification performance
	Feature Analysis
	Manual analysis of errors
	Comparison with existing detectors
	SINBAD in an open-world setting
	Efficiency

	Take aways
	Appendix A: Examples
	Interdependencies in filter lists
	Dynamic breakage caught due to saliency and interactions
	Content-rule Breakage undetected by network-based features
	Domain hopping and filter-list deprecation
	Overlay breakage and cookie-banner evasion limitations

	Appendix B: Implementation Details
	Extracting URLs from forum posts.
	VIPS Python Implementation
	Tree Comparison Algorithm

	Appendix C: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix D: Response to the Meta-Review

